В. П. ПУСТОВОЙТЕНКО, О. Р. ГАВРИШ (НГУ, Днепропетровск)

ОРГАНИЗАЦИЯ КОМПЛЕКСНОГО ОСВОЕНИЯ ПОДЗЕМНОГО ПРОСТРАНСТВА МЕГАПОЛИСОВ

Розглянуто проблему прогнозу тенденцій урбанізації, основних факторів, що впливають на сучасні способи організації освоєння підземного будівництва мегаполісів, при обгрунтуванні області комплексного використання і складу організаційно-технологічних схем освоєння підземного простору.

Рассмотрена проблема прогноза тенденций урбанизации, основных факторов, влияющих на современные способы организации освоения подземного строительства мегаполисов, при обосновании области комплексного использования и состава организационно-технологических схем освоения подземного пространства

The problem of forecasting the trends of urbanization, the main factors influencing the modern methods of organization of development of the underground construction of mega-cities, during the substantiation of field of integrated use and composition of organizational-and-technological schemes of development of underground space, is considered.

Актуальность проблемы

Освоение подземного пространства мегаполисов стало важнейшей частью нашей цивилизации и культуры. Глубина освоения
устойчиво перешагнула отметку 100 м. Крайне усложнились методы организации освоения подземного пространства и способы подземного строительства. Успех строительства
подземных сооружений нового поколения
зависит уже не только от нетрадиционных
проектных решений, но и в значительной
степени от технических и организационных
возможностей строителей и заказчиков, а
также от схем инвестирования строительства
и наличия средств.

В данном аспекте большое значение имеет повышение инвестиционной привлекательности подземных объектов. Одним из путей решения этой задачи является комплексное, заранее спланированное освоение подземного пространства, то есть последовательное, рациональное объединение в единую инфраструктуру подземных сооружений различного назначения. Комплексное использование подземного пространства в больших городах позволяет связать сооружения метрополитена с многофункциональными подземными и наземными объектами в единую систему жизнеобеспечения.

В этих условиях важное значение приобретает организация освоения подземного пространства, стремящаяся обобщить огромное количество накопленных фактов и внести вклад в создание общей теории проектирования освоения недр. Научные основы органи-

зации освоения подземного пространства позволяют конструировать современные системы подземных сооружений на основе сочетания новых строительных технологий, планировочных, архитектурных и конструктивных решений и использования свойств массива горных пород, достижений строительной геотехнологии и менеджмента.

Постановка задачи

В связи с поставленной научной проблемой необходимо решить следующие задания:

- систематизировать понятия, подходы и опыт освоения подземного пространства мегаполисов;
- исследовать закономерности и определить порядок освоения недр.

Изложения материала и результаты.

Главная цель подземной урбанистики состоит в обеспечении оптимальных условий труда, быта, отдыха и передвижения городского населения, увеличения площади открытых озелененных пространств на поверхности, формирования здоровой, удобной и эстетически привлекательной городской среды.

Объектами изучения строительной геотехнологии являются подземные сооружения горнодобывающих предприятий и энергетических комплексов, транспортные, гидротехнические, коммунальные тоннели, метрополитены, инженерные сооружения в подземном пространстве городов и другие подземные сооружения различного назначения.

По функциональному назначению подземные объекты (рис. 1) можно разделить на четыре группы:

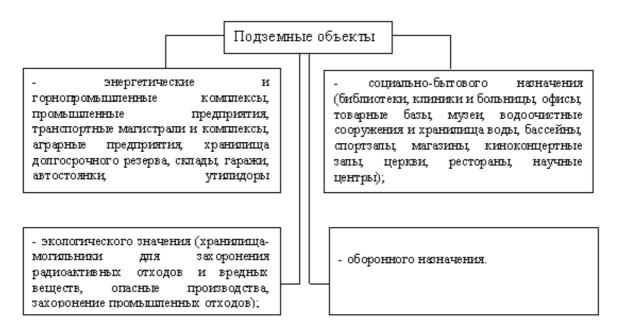


Рис. 1. Подземные объекты по функциональному назначению

Растущий интерес к освоению подземного пространства в значительной мере обусловлен положительными качествами подземных сооружений. Использование подземного пространства для размещения объектов различного назначения, помимо повышения эффективности использования недр и экономии территории, позволяет существенно уменьшить затраты энергии на отопление и охлаждение помещений, сократить эксплуатационные расходы по сравнению с альтернативными объектами на поверхности, резко снизить влияние внешних климатических условий на внутреннюю среду помещений и др. Подземные объекты надежно защищены от прямого воздействия климатических факторов (температурных условий наружного воздуха, солнечной радиации, осадков, ветров, тайфунов, смерчей, экстремальных нагрузок и т.д.). Благодаря теплофизическим свойствам породного массива, в нем с глубиной резко уменьшается амплитуда температурных колебаний наружного воздуха, что обусловливает существенное уменьшение теплопотерь подземных сооружений, а также теплопоступления из окружающей среды. Создаваемые при этом внутренние условия весьма благоприятны для размещения в подземных горных выработках складов продовольствия, винохранилищ, сейфов, кладовых кинофотоматериалов и документов, а также производств, требующих термоконстантных условий внутренней среды (радиоэлектроника, прецизионное машиностроение и др.). В связи с изоляцией от прямого воздействия климатических факторов умень-

шаются затраты на текущий ремонт и отопление.[1].

Объекты, размещаемые в подземных горных характеризуются выработках, повышенной виброустойчивостью и акустической изоляцией по сравнению с наземными сооружениями. Уникальные акустические характеристики подземных объектов обеспечиваются за счет резкого затухания амплитуды звуковых волн, проходящих через породную толщу. Эти свойства особенно благоприятны для размещения в подземном пространстве объектов, требующих полной акустической изоляции от внешней среды (станции геофизических наблюдений, студии звукозаписи, радио и телевидение, лаборатории и др.). Виброустойчивость подземных сооружений позволяет организовывать в подземных горных выработках производственные процессы, требующие полного отсутствия вибрации несущих и ограждающих конструкций. Высокая способность породного массива защищать от внешних воздействий позволяет широко использовать подземные сооружения для укрытия людей от средств массового поражения и защиты от катастроф и стихийных бедствий. В подземных горных выработках соляных шахт лечат хронический бронхит, астму и другие заболевания людей. В недрах и пещерах размещают театры, церкви и концертные залы, выращивают саженцы деревьев, размещают кафе и рестораны, кинотеатры, гостиницы и т.п.

Расширение практики использования подземного пространства для хозяйственных целей в значительной мере связано с процессом урбанизации, защитой окружающей среды от отрицательных воздействий транспортных инженерных систем и потенциально опасных производств, а также с целью сохранения энергии и захоронения вредных отходов ряда отраслей промышленности.

Особого внимания заслуживают подземные объекты для целей водоснабжения, хранения нефти, нефтепродуктов и различных видов горючего газа.

В современных условиях перспективным является строительство подземных атомных электрических станций как одного из направлений развития энергетики и обеспечения безопасности ядерной энергии.

О перспективности размещения в подземном пространстве объектов энергетики (тепловых, атомных, гидро- и пневмоаккумулирующих электростанций) свидетельствует уже то, что такие их структурно-технологические элементы, как шлаконакопители, системы очистки и переработки газопылевых и водных отходов, гидро- и пневмоаккумуляторы, можно разместить в подземном пространстве так же, как и аналогичные элементы вредных производств и объектов нефтехимической промышленности. Размещение под землей энергетических блоков АЭС и ТЭС (реакторов, котлов и т.д.) с позиций охраны окружающей среды вполне целесообразно, а по инженерно-геологическим и геомеханическим условиям возможно даже в массивах менее прочных, чем массивы гранитов или базальтов.

Во многих странах интенсивно развиваются прогрессивные направления подземного строительства. Так, например, подземные железные дороги, подземные скоростные трамваи и метрополитены позволяют уменьшить последствия перенаселенности больших городов, высвободить площади для жилой застройки на поверхности земли и пропустить большие грузопотоки людей. Глубокие подземные тоннели инженерных систем больших городов позволяют использовать их для многоцелевого использования (канализации, водопровода, ливневых вод, транспорта) и на этой основе обеспечить современную систему жизнеобеспечения при освоении подземного пространства городов.

Крупнейшие подземные станции по очистке сточных вод, расположенные в Стокгольме и Хельсинки, позволяют осуществить централизованно сбор, очистку и контроль вредных выбросов и сохранить исторические ландшафты. Дорожные тоннели на магистральных автодорогах и в городах позволяют сохранить жилые

массивы, ликвидировать транспортные заторы и могут служить убежищем для укрытия населения на военный период.

Построены подземные транспортные тоннели под акваториями, крупнейший из них — комплекс подземных тоннелей под проливом Ла-Манш; проектируются комплексы под Беринговым и Гибралтарским проливами.

Подземное хранение продуктов питания в подземных хранилищах и холодильниках широко применяется во многих странах. Подземные хранилища средней и малой емкости целесообразно размещать для хранения и переработки сельскохозяйственной продукции во всех регионах Украины.

Заслуживают внимания также подземные сооружения для хранения питьевой воды и аккумуляции воды, нагреваемой в солнечных установках на поверхности Земли.

Эффективность использования подземного пространства с точки зрения экономии энергозатрат подтверждается данными, приводимыми западными учеными. Приводя цифры огромных затрат на отопление современных высотных зданий они, например, отмечают, что 25...30 % всей энергии, потребляемой в Канаде, расходуется на отопление и охлаждение зданий. В то же время на подземных объектах энергетические затраты на 80...90 % ниже, чем на надземных. Экономия за счет этого фактора составляет от 6 до 12 долл./м². На завод точного приборостроения в г. Канзас-Сити после перевода его в горные выработки потребность в энергии на отопление снизилась в 3 раза, а на охлаждение – в 10 раз. Весьма близкие расчеты сделаны и европейскими специалистами.

По данным норвежских специалистов, максимальные значения установленной мощности в подземном спортивном зале и подземном плавательном бассейне, сооруженных в скальном массиве, составили 61 и 44 % от наземного, а расход энергии за год — 70 и 44 %. Экономия теплоэнергии на существующих подземных объектах в Финляндии составляет 74 % в холодильниках, 20 % в спортивных бассейнах, 31 % в спортивных залах. Потребление теплоэнергии в подземных складах и хранилищах более чем на 32 % ниже, чем в соответствующих наземных сооружениях.

Основой освоения подземного пространства является принцип использования недр и их сохранения как видоизменяемого ресурса. Этот принцип предполагает, что извлечение того или иного ресурса недр необходимо планировать с учетом возможности создания условий возник-

новения иных ресурсов, использование которых позволит не только компенсировать первоначальные затраты, но и получить дополнительный хозяйственный, экономический или социальный эффект [2].

В связи с этим параметры проектируемых объектов, технологий их строительства и эксплуатации выбираются с учетом этого принци-

па при обеспечении экологического равновесия окружающей среды.

Для того чтобы рационально решать поставленную задачу необходимо использовать такой подход, который позволяет полнее и многограннее обосновать приоритеты в освоении подземного пространства (табл. 1).

Таблица 1 Структура последовательности комплексного освоения недр

№ п/п	Раздел	Пути решения
1	Тенденции урбанизации	исследования в области изучения тенденций изменения численности населения в городах, рост энергопотребления, усложнения инфраструктуры
2	Проектирование подземных сооружений	исследования и обоснование социально-экономической целесообразности, технической возможности и экологической безопасности строительства подземных сооружений, месторасположения подземного сооружения, его формы и размеров, в зависимости от функционального назначения, горно-геологических условий строительства, технологии строительных работ и т.п.; горно-геологических условий строительства, технологии строительных работ и т.п.; стратегию и методы освоения природных и техногенных подземных пространств, стратегию и методы освоения природных и техногенных подземных пространств
3	Механика подземных сооружений	оценка устойчивости подземных сооружений, исследование процессов взаимодействия инженерных конструкций с породными массивами и установление качественных и количественных характеристик их напряженно-деформированного состояния, изучение закономерностей формирования нагрузок с учетом влияния горного и гидростатического давления, сейсмического и геодинамического воздействия, температуры окружающей среды, влияния технологии ведения горно-строительных работ и т.п., обоснование новых материалов, рациональных типов и конструкций крепей и обделок, разработка новых методов расчета инженерных конструкций (крепи, обделки, породные конструкции, армирование), оценка их прочности, устойчивости и долговечности
4	Обоснование технологии строительства, реконструкции и восстановление подземных горных выработок	исследования взаимосвязей элементов технологии горно-строительных работ, установление качественных и количественных параметров, определяющих выбор способов, техники и технологии строительства с учетом влияния природных и техногенных факторов на ее технико-экономические показатели, методов организации и управления работами по строительству одиночных горных выработок, комплексов подземных сооружений обычными и специальными способами, а также горнотехнических зданий и сооружений на поверхности; исследования и обоснование схем и способов технологии ремонта, реконструкции и восстановления подземных сооружений с целью увеличения срока их службы или повторного использования с новым функциональным назначением
5	Управление состоянием породного массива	исследования и обоснование способов и технологических параметров процессов замораживания, химического укрепления, тампонажа, водопонижения, осушения, разупрочнения пород и др., при строительстве, реконструкции и восстановлении подземных сооружений в сложных горно-геологических и горнотехнических условиях

Из таблицы становится понятным, что успешное освоение подземного пространства предполагает использование системных представлений о взаимосвязанности природных и техногенных процессов, динамических харак-

теристик геологических структур земли, закономерностях проявлений различных физических полей, достижениях в технологиях подземного строительства и т. п.

Выводы

Освоение подземного пространства стало условием жизни и развития городов. Наивысшие достижения архитектуры в освоении подземного пространства воплощены в подземных сооружениях нового поколения, в том числе в многоуровневых и многофункциональных комплексах.

Комплексное освоение подземного пространства крупных городов осуществляется на основе применения различных архитектурных, объемно-планировочных и конструктивных решений и позволяет рационально использовать наземную территорию, содействует упорядочению транспортного обслуживания населения и повышению безопасности дорожного движения, снижает уличный шум и загрязнение воз-

духа, способствует повышению уровня жизни людей.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Пустовойтенко, В. П. Геотехнічне забезпечення підземного будівництва в Україні [Текст] / В. П. Пустовойтенко. К., 1999. 257 с.
- 2. Шашенко, А. Н. Расчет несущих элементов подземных сооружений [Текст] / А. Н. Шашенко, В. П. Пустовойтенко. К.: Наук. думка, 2001. 167 с.
- 3. Организация освоения подземного пространства. Свершения и надежды [Текст]: учеб. пособие / А. Н. Левченко и др.; под ред. акад. АГН Е. В. Петренко. М.: Высш. шк., 2002. 403 с.

Поступила в редколлегию 16.03.2010. Принята к печати 22.03.2010.