УДК 629.424:628.43.6:62.592.31

А. Л. ГОЛУБЕНКО, д.т.н., профессор, ВНУ им. В. Даля (Украина);
Е. С. НОЖЕНКО, асп., ВНУ им. В. Даля (Украина);
В. И. МОГИЛА, д.т.н., профессор, ВНУ им. В. Даля (Украина)

ЭНЕРГИЯ ЭЛЕКТРОДИНАМИЧЕСКОГО ТОРМОЖЕНИЯ ЛОКОМОТИВА КАК ИСТОЧНИК ДЛЯ АКТИВАЦИИ ТОПЛИВОВОЗДУШНОЙ СМЕСИ ДИЗЕЛЯ ОЗОНОМ

У статьї аналітично обґрунтовано використання енергії гальмування локомотиву для активації паливо-попіріяної суміші. Проаналізовані можливі методи активації, запропонований метод активації палива озоном. Представлені результати експериментальних досліджень впливу озонованого палива на його фізико-хімічні властивості, а також на робочий процес дизеля.

В статті аналітично обґрунтовано використання енергії торможення локомотива для активації топливовоздушної смесі. Проаналізовані можливі методи активації, запропонований метод активації топлива озоном. Представлені результати експериментальних досліджень впливу озонованого топлива на його фізико-хімічні властивості, а також на робочий процес дизеля.

In the article the use of energy of braking of locomotive for activating the fuel-and-air mixture is analytically substantiated. The possible methods of activating are analysed and the method of ozone activating of fuel is offered. The results of experimental researches of influence of the ozonized fuel on its physical and chemical properties as well as on the working process of diesel are presented.

В умовах современного развития Украины большое внимание уделяется вопросам энергосбережения и рационального использования топливо-энергетических ресурсов, в связи с чем, разработка и внедрение системы рационального использования энергии электродинамического торможения на тепловозах приобретает все большее значение.

Использование электродинамического тормоза обеспечивает безопасность движения поездов вследствие наличия на тепловозе двух систем торможения: увеличение эффективности и надежности экстренного торможения; реализацию более высоких тормозных усилий, ограниченных по условиям нагрева и механической прочности бандажей колесных пар, снижение износа бандажей колесных пар более чем в 1,5 раза [1]; уменьшение в 4 – 5 раз количества колесных пар, выходящих из строя вследствие перегревов и трещин; снижение износа (в зависимости от профиля пути и скорости движения) тепловозов на 35 – 85%, вагонов – на 60 – 70% [1]; уменьшение вероятности взаимных контактов пар и его последствий; повышенное качество движения поездов на затяженных спусках и увеличение пропускной способности участка; уменьшение расходов на содержание в исправном состоянии пневматического тормозного оборудования. Реализация скоростей 140...150 км/ч для современного подвижного состава весьма затруднительна без использования электродинамического тормоза, действующего в области высокой скорости совместно с пневматическим [2].

Исследования работы тепловозов в режиме электродинамического торможения показало, что мощность, развиваемая тяговыми электродвигателями, составляет 1300...4000 кВт, причем у тепловозов мощность в тормозном режиме превосходит мощность в тяговом режиме в 1,2...1,3 раза [3].

Перспективным, на наш взгляд, является использование бросовой энергии торможения для активации топливовоздушной смеси с целью совершенствования процесса сгорания.

Для разработки схем использования части энергии ЭДТ рассмотрим модель движения состава по перегону при ЭДТ, при оснащении локомотива устройством для активации ГСМ.

Исходя из уравнения движения поезда в удельной форме и уравнения электрического равновесия тягового электродвигателя, работающего в генераторном режиме:
где γ – коэффициент инерции вращающихся масс; g – ускорение свободного падения, м/с²; v – скорость движения поезда, м/с; t_T – время, с; μ – передаточное число зубчатой передачи тягового электродвигателя; D_K – диаметр колеса, м; Φ – магнитный поток обмоток возбуждения тягового электродвигателя, Мкс; R_{el} – сопротивление обмотки якоря и добавочных полюсов, Ом; R_R – сопротивление резисторов, Ом; R_d – сопротивление устройств для активации ГСМ, Ом; t_T – мгновенное значение тормозного тока, А; L – индуктивность якорной обмотки, Гн; C_M – электрическая постоянная двигателя; t_T – время торможения, с.

Момент тягового электродвигателя M:

$$M = C_M \Phi i_T,$$

где C_M – магнитная постоянная тягового электродвигателя.

Удельное тормозное усилие:

$$b = \mu \frac{2Mm}{D_K \eta_{\text{эл}} G},$$

где $\eta_{\text{эл}}$ – КПД зубчатой передачи и тягового электродвигателя; m – число движущих колесных пар тепловоза, шт.; G – масса поезда, т.

Величина удельного полного сопротивления движению поезда o_0 [5]:

$$o_0 = o_0^* \cdot G_a + o_0^\circ \cdot G_c = o_0 = A_o + B_o \cdot \omega,$$

где o_0^*, o_0° – удельное основное сопротивление локомотива и состава, Н/т; G_a, G_c – масса соответственно локомотива и состава, т. A_o, B_o – коэффициенты, полученные в результате аппроксимации кривой сопротивления движению поезда. $A_o = o_0$ при $v = 0$, $B_o = \frac{o_0 - A_o}{v}$ при $v \neq 0$.

Частное решение (1), после дифференцирования и преобразований, представлено в виде:

$$I = \frac{K_i}{1 + B_o K_v} \left(t^0 - A_o \right),$$

$$v = \frac{3.6 K_v}{1 + B_o K_v} \left(t^0 - A_o \right) \cdot 10^{-3},$$

где

$$K_i = \frac{G \cdot D_K \eta_{\text{эл}} m}{2 \mu^2 \cdot C_M \cdot \frac{E}{n}} - E,$$

$$K_v = \frac{G \cdot D_K^2 \eta_{\text{эл}} \pi}{60 \cdot C_M \cdot \frac{E}{n^2}} \left(R_{el} + R_R + R_d \right).$$
божем [13]. Предпосылки использования озона вместо кислорода воздуха основаны на его физико-химических свойствах. Проводились детальные исследования озонирования бензина с целью снижения расхода топлива и вредных выхлопов отработавших газов [14], на основе которых выявлено, что подача озона в топливо более эффективна, чем подача озонированного воздуха в карбюратор.

Рис. 1. Классификация основным методов активации топлива

Авторами были проведены предварительные экспериментальные исследования по влиянию озонирования ДТ на показатели двигателя [15], где было зафиксировано снижение расхода топлива на 1,1%, дымности на 12...17%.

Для выявления механизма, лежащего в основе улучшения указанных характеристик дизельного двигателя необходимо определение изменения физико-химических свойств топлива в зависимости от концентрации озона в топливе и времени хранения озонированного топлива.

Для обработки топлива использовались озонаторы, разработанные на кафедре железнодорожного транспорта ВНУ им. В. Даля.

Озонирование топлива заключалось в его насыщении в барботажной камере при подаче озоновоздушной смеси с определенной концентрацией озона (рис. 2). Время озонирования составляло 10, 30 и 60 мин при расходе воздуха 40 л/ч. Концентрация озона – 1,34·10⁴ моль/л. Поглощение озона было количественным.

Результаты исследований влияния озонирования на параметры ДТ приведены на рис. 2-5.

На основании рис. 3 можно утверждать о нестабильности характеристик топлива после озонирования, что обосновывает необходимость озонирования топлива непосредственно на транспортном средстве перед его подачей в камеру сгорания.

Рис. 2. Зависимость низшей теплоты сгорания дизельного топлива от количества поглощенного озона
Рис. 3. Зависимость плотности при 20 °C дизельного топлива от количества поглощенного озона с течением времени хранения топлива:

- сразу после озонирования,
- по прошествии 2 месяцев

На основании рис. 3 можно утверждать о нестабильности характеристик топлива после озонирования, что обосновывает необходимость озонирования топлива непосредственно на транспортном средстве перед его подачей в камеру сгорания.

Таблица 1

<table>
<thead>
<tr>
<th>Тип углеводородов</th>
<th>Константы скорости реакции озонолиза для различных типов углеводородов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Константы скорости реакции (\lambda) (моль/с)</td>
</tr>
<tr>
<td>для парафиновых углеводородов</td>
<td>10,5·10^{-2}...0,7·10^{0}</td>
</tr>
<tr>
<td>для нафтеновых углеводородов</td>
<td>5·10^{-2}...0,32·10^{0}</td>
</tr>
<tr>
<td>для ароматических углеводородов</td>
<td>3,4·10^{-1}...5·10^{1}</td>
</tr>
</tbody>
</table>

Таким образом, озонолиз будет подвергаться, в основном, наиболее реакционноспособные ароматические углеводороды. Влияние озона на процесс горения при его микродобавках в топливо объясняется образованием пероксидных соединений и последующим ценным их распадом на свободные радикалы, которые и вызывают детонацию в зоне горения. Время существования свободных радикалов ограничено, поэтому длительное хранение озонированного топлива приводит к синтезу в его объеме кислот и снижает способность к полному сгоранию. Это подтверждается тем, что при длительном озонировании топлива наблюдалось выпадение растворимого в щелочи осадка, что указывает на необратимые изменения в топливе.

Как следует из [11] при сгорании топлива на скорость предельных реакций при самоспламенении в дизеле значительное влияние оказывает жидкофазное окисление распыленного топлива, которое, главным образом, зависит от количества пероксидных соединений. В свою очередь, длительность периодов задержки воспламенения топлива определяется скоростью предельных реакций. Таким образом, при добавлении озона в топливо, происходит предварительное окисление капель жидкого топлива с образованием перекисных соединений, которые повышают цетановое число топлива и уменьшают период задержки воспламенения, тем самым облегчая запуск двигателя, плавность процесса сгорания и снижая расход топлива. Как известно, цетановое число во многом зависит от химического состава дизельного топлива и структуры углеводородов, составляющих топливо. Ароматические углеводороды снижают цетановое число, поэтому для его улучшения небходимо удаление из топлива, тем или иным способом, ароматических углеводородов, что и происходит в ходе озонирования.

Рис. 4. Зависимость вязкости топлива от количества поглощенного озона в топливе

Рис. 5. Зависимость температуры вспышки DT от количества поглощенного озона, растворенного в топливе

Влияние дозирования озоновоздушной смеси в топливо, в основном, связано с хемосорбицией и реакциями озонолиза в жидкой фазе. Анализ реакционной способности углеводородов можно осуществить по константам скорости реакции озонолиза, которые представлены в табл. 1 [16]:

123
Рассмотренные в статье аналитическое обоснование использования энергии торможения для активации топливовоздушной смеси, в частности, озонирования топлива, позволяют сделать вывод о возможности и перспективности дальнейшего развития данного направления.

Исследование физико-химических свойств топлива количественно показали влияния на них озонирования. Плотность DT увеличивается незначительно (до 0,2%), вязкость – до 2,8 %, температура вспышки – для DT увеличивается до 13 °C. Дальнейшие исследования должны быть направлены на определение связи между изменениями этих характеристик и экономическими и экологическими показателями двигателя.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Поступила в редколлегию 30.07.2009