NUMERICAL SIMULATION OF AIR POLLUTION IN CASE OF UNPLANNED AMMONIA RELEASE

Authors

DOI:

https://doi.org/10.15802/stp2017/104142

Keywords:

air pollution, unplanned release, toxic chemical, numerical modeling

Abstract

Purpose. Development fast calculating model which takes into account the meteorological parameters and buildings which are situated near the source of toxic chemical emission. Methodology. The developed model is based on the equation for potential flow and equation of pollutant dispersion. Equation of potential flow is used to compute wind pattern among buildings. To solve equation for potential flow Samarskii implicit difference scheme is used. The implicit change – triangle difference scheme is used to solve equation of mass transfer. Numerical integration is carried out using the rectangular difference grid. Method of porosity technique («markers method») is used to create the form of comprehensive computational region. Emission of ammonia is modeled using Delta function for point source. Findings. Developed 2D numerical model belongs to the class of «diagnostic models». This model takes into account the main physical factors affecting the process of dispersion of pollutants in the atmosphere. The model takes into account the influence of buildings on pollutant dispersion. On the basis of the developed numerical models a computational experiment was carried out to estimate the level of toxic chemical pollution in the case of unplanned ammonia release at ammonia pump station. Originality. Developed numerical model allows to calculate the 2D wind pattern among buildings and pollutant dispersion in the case unplanned ammonia release. Model allows to perform fast calculations of the atmosphere pollution. Practical value. The model can be used when developing the PLAS (Emergency Response Plan).

Author Biographies

L. V. Amelina, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan

Dep. «Hydraulics and Water Supply»,
Lazaryan St., 2, Dnipro, Ukraine, 49010,
tel. +38 (056) 273 15 09

M. M. Biliaiev, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan

Dep. «Hydraulics and Water Supply», 
Lazaryan St., 2, Dnipro, Ukraine, 49010, 
tel. +38 (056) 273 15 09

References

Biliaiev, M. M., Berlov, A. V., & Mashikhina, P. B. (2014). Modelirovaniye nestatsionarnykh protsessov avariynogo zagryazneniya atmosfery [Monograph]. Dnipropetrovsk: Aktsent PP.

Berlyand, M. Y. (1985). Prognoz i regulirovaniye zagryazneniya atmosfery. Leningrad: Gidrometeoizdat.

Bruyatskiy, Y. V. (2000). Teoriya atmosfernoy diffuzii radioaktivnykh vybrosov. Kyiv: Institut gidromekhaniki NAN Ukrainy.

Zakaznov, V. F., & Kursheva, L. A. (1985). Rasprostraneniye ammiaka pri razgermetizatsii ammiakoprovoda, emkostey. In Issledovaniya i razrabotki po sozdaniyu magistralnykh ammiakoprovodov i skladov zhidkogo ammiaka. Moscow: The State Research and Design Institute of the Nitric Industry and Organic Synthesis Products.

Marchuk, G. I. (1982). Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy. Moscow: Nauka.

Tsykalo, A. L., Strizhevskiy, I.I., & Baglet, A. D. (1982). Azotnaya promyshlennost: Ispareniye i rasseivaniye ammiaka pri ego razlivakh i utechkakh. Moscow: NIITEKHIM.

Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Biliaiev M. M. (1997). Chislennoye modelirovaniye rasprostraneniya zagryazneniya v okruzhayushchey srede. Kyiv: Naukova dumka.

Biliaiev, M. M., Amelina, L.V., & Kharitonov, M. M. (2013). Numerical simulation of the atmosphere pollution after accident at the “Tolliaty-Odessa” ammonia pipe. NATO Science for Peace and Security Series C: Environmental Security, 391-395. doi: 10.1007/978-94-007-5577-2_66

Biliaiev, M. M., & Kharytonov, M. M. (2012). The Numeric Forecast of Air Pollution Caused by a Blasting Accident in the EnterpriseResponsible for Rocket Fuel Utilization in Ukraine. NATO Science for Peace and Security Series C: Environmental Security, 313-327. doi: 10.1007/978-94-007-5034-0_25

Daly, A., Zanetti, P., & Jennings, M. (2013). Accident reconstruction and plume modeling of an unplanned ammonia release. Air Pollution XXI. WIT Transactions on Ecology and the Environment, 174, 3-13. doi: 10.2495/air130011

SWCA Environmental Consultants. (2010). Dispersion Modeling of Hydrogen Sulfide at Cimarex Rands Butte Project Using ALOHA. Wyoming.

Janos, T., Gorliczay, E., & Borbely, J. (2016). Atmostheric spreading model for ammonia released from the poultry house. Ecotoxicologie, Zootehnie si Tehnologii de Industrie Alimentara, XV/B, 331-337. Retrieved from http://protmed.uoradea.ro/facultate/publicatii/ecotox_zooteh_ind_alim/2016B/ipa/17%20Tamas_Janos.pdf

Mellsen, S. B. (1989). A Fortran Program for Calculating Chemical Hazards Using the NATO Stanag 2103/ATP-45 Algorithm: Suffield memorandum 1275. Alberta: Defence Research Establishment Suffield. Retrieved from http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA214763

Zavila, O., Dobeš, P., Dlabka, J., & Bitta, J. (2015). The analysis of the use of mathematical modeling for emergency planning purposes. Bezpecnostni vyzkum, 2. Retrieved from http://www.population-protection.eu/prilohy/casopis/30/213.pdf

Warner, T., Benda, P., Swerdlin, S., Knievel, J., Copeland, J., Crook, A., …, & Weil, J. (2007). The Pentagon Shield Field Program: Toward Critical Infrastructure Protection. Bulletin of the American Meteorological Society, 88 (2), 167-176. doi: 10.1175/BAMS-88-2-167

Downloads

Published

2017-06-14

How to Cite

Amelina, L. V., & Biliaiev, M. M. (2017). NUMERICAL SIMULATION OF AIR POLLUTION IN CASE OF UNPLANNED AMMONIA RELEASE. Science and Transport Progress, (3(69), 7–14. https://doi.org/10.15802/stp2017/104142

Issue

Section

ECOLOGY AND INDUSTRIAL SAFETY