COMPOSITE IMPULSED-PLASMA COATING «STEEL T1/CAST IRON CR28MN3»

Authors

DOI:

https://doi.org/10.15802/stp2017/104432

Keywords:

pulsed-plasma treatment, coating, microstructure, carbides, microhardness

Abstract

Purpose. The article is aimed to investigate the structure of the composite coating obtained by pulse-plasma treatment using cathodes of high-carbon material with higher amount of carbide-forming elements. Methodology. The coating was produced using electrothermal axial plasma accelerator with the following operating parameters: voltage applied to the electrodes is 4.0 kV; amplitude of the current is 18 kA; distance between electrodes of about 50 mm. The treatment was carried out according to the scheme: five pulses with electrode of steel T1 + five pulses with electrode of cast iron Cr28Mn3. The pulsed plasma treatment was followed by heat treatment as holding at 950 °C for 2 hours, followed by oil cooling. Optical (Nikon Eclipse L150) and electron (JEOL JSM-6510) microscopy, energy dispersive spectroscopy (X-Act, Oxford Instruments), the microhardness measurement (FM-300 Future-Tech Corp.) were used for microstructure studying. Findings. It is shown that pulsed-plasma treatment using various electrodes resulted in formation of laminated coating «P18 steel/cast iron 230Cr28Mn3» of 110-130 microns thick. The analysis of micro-hardness coating before and after the post-plasma heat treatment is carried out. It is found that quenching resulted in increase of coating microhardness from 4900-7300 МPа tо 10500-13500 МPа (layer “T1”) and 12000-16500 МPа (layer “230Cr28Mn3”). Originality. The distribution of the alloying elements within the coating is studied. The diffusion transition layer having variable tungsten and chromium content was revealed between the layer “T1” and layer “230Cr28Mn3”. It was shown that after plasma deposition an oversaturated solid solution is being formed in the coating. During post-heat treatment it decomposes with the precipitation of 45-70 % carbides of different shape resulting in sharp increase of microhardness. Carbides amount is proportional to content of carbon and carbide-forming elements in the electrode used for certain layer deposition. Practical value. It was shown the possibility of the formation of a composite layered pulsed-plasma coating with variable chemical composition and micro-hardness in cross-section by means of varying the cathode material and by use of post-plasma heat treatment.

Author Biographies

Y. G. Chabak, Pryazovskyi State Technical University

Dep. «Physics»,
Universytetska St., 7, Mariupol, Ukraine, 87500,
tel. +38 (0629) 44 61 31

T. V. Pastukhova, Pryazovskyi State Technical University

Dep. «Physics», 
Universytetska St., 7, Mariupol, Ukraine, 87500, 
tel. +38 (0629) 44 61 31

V. G. Efremenko, Pryazovskyi State Technical University

Dep. «Physics», 
Universytetska St., 7, Mariupol, Ukraine, 87500, 
tel. +38 (0629) 44 61 31

I. O. Vakulenko, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan

Dep. «Applied Mechanics and Materials Science»,
Lazaryan St., 2, Dnipro, Ukraine, 49010,
tel.+38 (056) 373 15 56

I. A. Volosenko, Pryazovskyi State Technical University

Dep. «Physics», 
Universytetska St., 7, Mariupol, Ukraine, 87500, 
tel. +38 (0629) 44 61 31

References

Vakulenko, І. O. (2010). Strukturnyi analiz v materialoznavstvi. Dnipropetrovsk: Makovetskyi.

Chabak, Y. G., Fedun, V. I., Efremenko, B. V., Zurnadzhi, V. I., Dzherenova, A. V., & Volosenko, I. A. (2016). Cathode material and pulsed plasma treatment influence on the microstructure and microhardness of high-chromium cast iron surface. Reporter of the Priazovskyi State Technical University. Section: Technical sciences, 32, 72-79.

Cheiliakh, A. P., Kutsomelya, Y. Y., Fedun, V. I., & Ryabikina, M. A. (2014). The influence of parameters of pulse-plasma treatment on structure and properties of steel 40Cr. Stroitelstvo, materialovedeniye, mashinostroeniye, 73, 235-239.

Lebedev, А. D., & Uryukov, B. A. (1990). Impulsnyye uskoriteli plazmy vysokogo davleniya. Novosibirsk: Institute of Thermophysics SB RAS.

Pogrebnyak, A. D., Tyurin, Y. N., & Kobzev, A. P. (2001). Modifitsirovaniye i legirovaniye alpha-Fe s pomoshchyu vozdeystviya vysokoskorostnoy impulsnoy plazmennoy strui. Pisma v zhurnal tekhnicheskoy fiziki, 27(15), 1-8.

Tyurin, Y. N., & Zhadkevich, M. L. (2008). Plazmennyye uprochnyayushchiye tekhnologii. Kyiv: Naukova dumka.

Chabak, Y. G., Fedun, V. I., Shimizu, K., Efremenko, V. G., & Zurnadzhy, V. I. (2016). Phase-Structural Composition of coating obtained by pulsed plasma treatment using eroded cathode of T1 high speed steel. Problems of Atomic Science and Technology: Plasma Electronics and New Acceleration Methods, 4, 100-106.

Chabak, Y. G., Еfremenko, V. G., & Stanishevskyi, R. R. (2011). Structural changes in the complex-white cast iron at destabilizing heating. Bulletin of Dnipropetrovsk National University of Railway Transport, 38, 229-232.

Kovaleva, M., Tyurin, Y., Vasilik, N., Kolisnichenko, O., Prozorova, M., Arseenko, M., & Danshina, E. (2013). Deposition and characterization of Al2O3 coatings by multi-chamber gas-dynamic accelerator. Surface and Coatings Technology, 232, 719-725. doi: 10.1016/j.surfcoat.2013.06.086

Kolyada, Y. E., Fedun, V. I., Tyutyunnikov, V. I., Savinkov, N. A., & Kapustin, A. E. (2013). Formation mechanism of the metallic nanostructures using pulsed axial electrothermal plasma accelerator. Problems of Atomic Science and Technology: Plasma Electronics and New Acceleration Methods, 4(86), 297-300.

Kolyada, Y. E., & Fedun, V. I. (2015). Pulse electrothermal plasma accelerators and its application in scientific researches. Problems of Atomic Science and Technology: Plasma Electronics and New Acceleration Methods, 4(98), 325-330.

Ozbek, Y. Y., & Durman, M. (2015). Surface behavior of AISI 4140 modified with the pulsed-plasma technique. Materials and technology, 49(3), 441-445. doi: 10.17222/mit.2013.219

Sartowska, B., Piekoszewski, J., Walis, L., Kopcewicz, M., Werner, Z., Stanisławski, J., & Prokert, F. (2003). Phase changes in steels irradiated with intense pulsed plasma beams. Vacuum, 70(1-2), 285-291. doi: 10.1016/S0042-207X(02)00656-5

Kolyada, Y. E., Bizyukov, A. A., Bulanchuk, O. N., & Fedun, V. I. (2015). Pulse electrothermal plasma accelerators and its application in the technologies. Problems of Atomic Science and Technology: Plasma Electronics and New Acceleration Methods, 4, 319-324.

Astashynski, V. M., Ananin, S. I., Askerko, V. V., Kostyukevich, E. A., Kuzmitski, A. M., Mishchuk, A. A., & Puric, J. (2007). Studies and characterization of quasi-stationary compression plasma flows generated by gas-discharge and erosive plasma accelerators. Publications of the Astronomical Observatory of Belgrade, 82, 23-33.

Cherenda, N. N., Uglov, V. V., Poluyanova, M. G., Astashynski, V. M., Kuzmitski, A. M., Pogrebnjak, A. D., & Stritzker, B. (2009). The influence of the coating thickness on the phase and element composition of a Ti coating/steel system surface layer treated by a compression plasma flow. Plasma Processes and Polymers, 6(1), 178-182. doi: 10.1002/ppap.200930507

Vakulenko, I. O., Plitchenko, S. О., Makarevich, D. V. (2014). Influence of chemical compounds of the forming of welding arc. Science and Transport Progress, 5(53), 92-100. doi: 10.15802/stp2014/30824

Published

2017-06-16

How to Cite

Chabak, Y. G., Pastukhova, T. V., Efremenko, V. G., Vakulenko, I. O., & Volosenko, I. A. (2017). COMPOSITE IMPULSED-PLASMA COATING «STEEL T1/CAST IRON CR28MN3». Science and Transport Progress, (3(69), 102–111. https://doi.org/10.15802/stp2017/104432

Issue

Section

MATERIAL SCIENCE