SIMULATION OF CARS ACCUMULATION PROCESSES FOR SOLVING TASKS OF OPERATIONAL PLANNING IN CONDITIONS OF INITIAL INFORMATION UNCERTAINTY

О. A. Tereshchenko

Abstract


Purpose. The article highlights development of the methodological basis for simulation the processes of cars accumulation in solving operational planning problems under conditions of initial information uncertainty for assessing the sustainability of the adopted planning scenario and calculating the associated technological risks. Methodology. The solution of the problem under investigation is based on the use of general scientific approaches, the apparatus of probability theory and the theory of fuzzy sets. To achieve this purpose, the factors influencing the entropy of operational plans are systematized. It is established that when planning the operational work of railway stations, sections and nodes, the most significant factors that cause uncertainty in the initial information are: a) external conditions with respect to the railway ground in question, expressed by the uncertainty of the timing of cars arrivals; b) external, hard-to-identify goals for the functioning of other participants in the logistics chain (primarily customers), expressed by the uncertainty of the completion time with the freight cars. These factors are suggested to be taken into account in automated planning through statistical analysis – the establishment and study of the remaining time (prediction errors). As a result, analytical dependencies are proposed for rational representation of the probability density functions of the time residual distribution in the form of point, piecewise-defined and continuous analytic models. The developed models of cars accumulation, the application of which depends on the identified states of the predicted incoming car flow to the accumulation system, are presented below. In addition, the last proposed model is a general case of models of accumulation processes with an arbitrary level of reliability of the initial information for any structure of the incoming flow of cars. In conclusion, a technique for estimating the results of simulation the cars accumulation was proposed to optimize the transportation process, depending on the chosen criterion. Findings. The developed methodology of simulation of cars accumulation process was reflected in the dynamic models created with the participation of the author and implemented on the Belarusian Railroad on the basis of IAS SMD CT. They are designed to provide operational planning of the transportation process on the basis of methods that allow assessing technological risks. Originality. The innovative component of the work is due to the expansion of existing models of the accumulation of cars for cases of uncertainty of the initial information. Thus, the earlier deterministic models are particular cases of the proposed model. Also, unlike existing ones, the technique allows to take into account the influence of random processes in a complex manner. Due to this, technological risks can be further assessed and the necessary regulatory measures can be implemented promptly. In general, the results obtained by modeling the proposed method allow to improve the quality of output solutions in the system of shift and daily operational planning, increasing the reliability of operational plans. Practical value. To date, there is a favorable opportunity to use the proposed methodology of modeling in existing in the railway transport systems of automated operational planning for operational work, including the optimization of local railways and the solution of a number of urgent tasks of train formation.


Keywords


operational planning; uncertainty of information; cars accumulation; simulation; technological risks; automation

References


Kuznetsov, V. G., Tereshchenko, O. A., Fedorov, Y. A., Starinskaya, N. A., & Sakovich, S. Y. (2015). Avtomatizirovannaya sistema smenno-sutochnogo planirovaniya poyezdnoy i gruzovoy raboty Belorusskoy zheleznoy dorogi. Bulletin BelGUTa: Science and Transportation, 2 (30), 53-56.

Vol, M., & Martin, B. (1981). Analiz transportnykh sistem. Moscow: Transport.

Gershvald, A. S. (2001). Optimizatsiya operativnogo upravleniya protsessom gruzovykh perevozok na zheleznodorozhnom transporte. Moscow: Intekst.

Gruntov, P. S., & Erofeev, A. A. (2003). Informatsionno-tekhnologicheskiy podkhod k sisteme poyezdoobrazovaniya. Proceedings of the International Scientific-Practical Conference «Problems and Prospects of Development of Transport Systems and the Construction of the Complex», 2003, Gomel. 17-19. Gomel: BelGUT.

Gruntov, P. S., & Zakharov, V. A. (1981). Prognozirovaniye pokazateley raboty sortirovochnykh stantsiy metodom modelirovaniya na EVM. Gomel: BelGUT.

Dolhopolov, P. V., & Petrushov, V. V. (2009). Udoskonalennia upravlinnia potokamy u transportnomu vuzli za dopomohoiu aparatu nechitkykh neironnykh merezh. Eastern-European Journal of Enterprise Technologies, 1 (3(37)), 40-42.

Dolhopolov, P. V., & Bovkun, O. O. (2012). Improvement of local work of railway junction on the basis of time-tables theory. Eastern-European Journal of Enterprise Technologies, 2 (11 (56)), 30-32.

Erofeev, A. A., & Fedorov, Y. A. (2016). Planning for the formation of trains in the system of intellectual management of transportation process. Transport Systems and Transportation Technologies, 12, 16-24. doi: 10.15802/tstt2016/85881

Kudryavtsev, V. A., & Svetashev, A. A. (2015). Laws of train formation at the railroad yards with train departure under fixed schedule. Proceedings of Petersburg Transport University, 2, 5-14.

Kuznetsov, V. G., & Erofeev, A. A. (2008). Kompleksnaya sistema upravleniya poezdnoy rabotoy na Belorusskoy zheleznoy doroge. Proceedings of the II International Scientific-Practical Conference «Problems and Prospects of Development of Transport Systems and the Construction of the Complex», 2008, Gomel. 68-69. Gomel: BelGUT.

Svetashev, A. A., & Svetasheva, N. F. (2016). The process of accumulation wagons at marshalling yards with a firm timetable trains. Scientific and Technical Journal of Bryansk State University, 4, 117-123. doi: 10.22281/2413-9920-2016-02-04-117-123

Tereshchenko, O. A. (2016). Operational planning of local work organization of railway section and junction with use of dynamic model of transportation process. Transport Systems and Transportation Technologies, 12, 80-89. doi: 10.15802/tstt2016/85889

Banks, J., Carson, II, J. S., & Barry, L. (1996). Nelson Discrete-event system simulation (2nd ed.). UpperSaddleRiver: Prentice Hall.

Erofeev, A. A., & Erofeeva, H. (2017). Intelligent Management of the Railway Transportation Process: Object Model. Proceedings of the International Conference Open «Semantic Technologies for Intelligent Systems OSTIS-2017», February, 16-18, 2017, Minsk. 281-284. Minsk: Belarusian State University of Informatics and Radioelectronics.

Kazakov, N. (2006). Imitating modeling groups of multimodal cargo lines with participation of a sailing charter. Transport Engineering, XIV (3), 74-82.

Osipov, G. S., & Sazonov, A. E. (2016). Fuzzy expert system of shipping companies safety assessment. European Research, 3 (14), 10-11. doi: 10.20861/2410-2873-2016-14-002

Chen, M., Bernstein, D., Chien, S., & Mouskos, K. (1999). Simplified Formulation of the Toll Design Problem. Transportation Reseach Record: Journal of the Transportation Research Board, 1667, 88-95. doi: 10.3141/1667-11

Zharikova, M., & Sherstjuk, V. (2016). Threat Assessment Method for Intelligent Disaster Decision Support System. Advances in Intelligent Systems and Computing, 512, 81-99. doi: 10.1007/978-3-319-45991-2_6


GOST Style Citations


  1. Автоматизированная система сменно-суточного планирования поездной и грузовой работы Белорусской железной дороги / В. Г. Кузнецов, О. А. Терещенко, Е. А. Федоров [и др.] // Вестн. Белорус. гос. ун-та транспорта: Наука и транспорт. – 2015. – № 2 (30). – С. 53–56.
  2. Вол, М. Анализ транспортных систем : [сокращ. пер. с англ.] / М. Вол, Б. Мартин ; под ред. И. А. Молодых. – Москва : Транспорт, 1981. – 516 с.
  3. Гершвальд, А. С. Оптимизация оперативного управления процессом грузовых перевозок на железнодорожном транспорте / А. С. Гершвальд. – Москва : Интекст, 2001. – 240 с.
  4. Грунтов, П. С. Информационно-технологический подход к системе поездообразования / П. С. Грунтов, А. А. Ерофеев // Проблемы и перспективы развития трансп. систем и строит. комплекса : тез. докл. междунар. науч.-практ. конф. / Белорус. гос. техн. ун-т. – Гомель, 2003. – Ч. II. – С. 17–19.
  5. Грунтов, П. С. Прогнозирование показателей работы сортировочных станций методом моделирования на ЭВМ / П. С. Грунтов, В. А. Захаров. – Гомель : БелИИЖТ, 1981. – 60 с.
  6. Долгополов, П. В. Удосконалення управління потоками у транспортному вузлі за допомогою апарату нечітких нейронних мереж / П. В. Долгополов, В. В. Петрушов // Східно-Європ. журн. передових технологій. – 2009. – Т. 1., № 3 (37). – С. 40–42.
  7. Долгополов, П. В. Удосконалення управління потоками у транспортному вузлі за допомогою апарату нечітких нейронних мереж / П. В. Долгополов, О. О. Бовкун // Східно-Європ. журн. передових технологій. – 2012. – Т. 2, № 11 (56). – С. 30–32.
  8. Ерофеев, А. А. Планирование составообразования в системе интеллектуального управления перевозочным процессом / А. А. Ерофеев, Е. А. Федоров // Транспортні системи та технології перевезень : зб. наук. пр. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2016. – Вип. 12. – С. 16–24. doi: 10.15802/tstt2016/85881.
  9. Кудрявцев, В. А. Закономерности составообразования на сортировочных станциях при отправлении поездов по твердому графику движения / В. А. Кудрявцев, А. А. Светашева // Изв. Петербург. ун-та путей сообщения. – 2015. – Вып. 2. – С. 5–14.
  10. Кузнецов, В. Г. Комплексная система управления поездной работой на Белорусской железной дороге / В. Г. Кузнецов, А. А. Ерофеев // Проблемы и перспективы развития транспортной системы и строительного комплекса : материалы II Междунар. науч.-практ. конф. / Белорус. гос. техн. ун-т. – Гомель, 2008. – С. 68–69.
  11. Светашев, А. А. Процесс накопления вагонов на сортировочных станциях при твердом графике движения поездов / А. А. Светашев, Н. Ф. Светашева // Научно-техн. вестн. Брянск. гос. ун-та. – 2016. – № 4. – С. 117–123. doi: 10.22281/2413-9920-2016-02-04-117-123.
  12. Терещенко, О. А. Оперативное планирование местной работы железнодорожных участков и узлов с использованием динамической модели перевозочного процесса / О. А. Терещенко // Транспортні системи та технології перевезень : зб. наук. пр. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2016. – Вип. 12. – С. 80–89. doi: 10.15802/tstt2016/85889.
  13. Banks, J. Discrete-event system simulation. Second edition / Jerry Banks, John S. Carson, Barry L. Nelson. –UpperSaddleRiver, N. J : Published by Prentice Hall, 1996. – 594 p.
  14. Erofeev, A. A. Intelligent Management of the Railway Transportation Process: Object Model / A. A. Erofeev, H. Erofeeva // Открытые семантические технологии проектирования интеллектуальных систем = Open Semantic Technologies for Intelligent Systems (OSTIS–2017) : материалы междунар. науч.-техн. конф. (16.02–18.02.2017) / Белорус. гос. ун-т информатики и радиоэлектроники. – Минск, 2017. – С. 281–284.
  15. Kazakov, N. Imitating modeling groups of multimodal cargo lines with participation of a sailing charter / N. Kazakov // Transportas (Transport Engineering). –Vilnius, 2006. – Vol. XIV, No. 3. – P. 74–82.
  16. Osipov, G. S Fuzzy expert system of shipping companies safety assessment / G. S. Osipov, A. E. Sazonov // European Research. – 2016. – No. 3 (14). – P. 10–11. doi: 10.20861/2410-2873-2016-14-002.
  17. Simplified Formulation of the Toll Design Problem / M. Chen, D. Bernstein, S. Chien, K. Mouskos // Transportation Reseach Record : J. of the Transportation Research Board. – 1999. – Vol. 1667. – P. 88–95. doi: 10.3141/1667-11.
  18. Zharikova, M. Threat Assessment Method for Intelligent Disaster Decision Support System / M. Zharikova, V. Sherstjuk // Advances in Intelligent Systems and Computing. – 2016. – Vol. 512. – P. 81–99. doi: 10.1007/978-3-319-45991-2_6.


DOI: http://dx.doi.org/10.15802/stp2017/104593

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)