THE RELATIONSHIP BETWEEN STIFFNESS LOSSES AND LOSSES IN BEARINGS OF ROPE BLOCKS

V. M. Bohomaz, L. M. Bondarenko, M. V. Ocheretniuk, O. O. Tkachov

Abstract


Purpose. To determine the efficiency of rope blocks, it is necessary to determine the stiffness coefficient of the ropes of blocks, taking into account the classification group of the mechanism and the wrapping angle of a block by a rope. At this one should use well-tested values of the efficiency coefficients of the rope blocks, taking into account the wrapping angle of a block by a rope and the analytically found friction coefficients of the rolling bearings given to the trunnion. Methodology. The work presents the analytical method of determining the coefficient of bearing resistance of the block when it is rotated by both the inner and outer cages, as well as the design scheme of the bearing of the block. Findings. The analysis of the lubrication method effect, the operating mode of the mechanism and the wrapping angle of a block by a rope on losses in bearings was carried out for rope blocks. The corresponding comparative tables of losses are given. Analysis of the obtained calculation results allows us to establish: 1) the main resistance affecting the cable blocks efficiency is the resistance in bearings; 2) the second largest component is the stiffness losses, depending on the operating mode, the wrapping angle of a block by a rope, the type of bearing lubrication; 3) the block efficiency when rotating the inner cage is higher than rotating the outer one by about 3% with thick lubrication and 1M mode; 4) in the sequential location of assemblies with a rolling bearing, it is necessary to strive for the design of the assembly in which the inner cage rotates; 5) with the number of blocks up to 5, one can use the recommended definitions of block bearings in the literature with an error in the efficiency value of up to 10%. Originality. The authors obtained values of resistances in the rolling bearings of the rope blocks and stiffness losses due to the girth of the block by the rope. In this case, dependences were used to determine the coefficient of rolling friction, obtained using the Hertz analytic dependences on determination of contact stresses and deformations, as well as the experimental values of the coefficient of rolling friction for the blocks. Practical value. The resistance values obtained by the authors can be used for refined calculations of the mechanisms of machines.


Keywords


block; rope; losses; bearing; stiffness

References


Bogomas, V. M., Briljova, M. G., Bondarenko, L. M., & Glavatskij, K. C. (2015). Vplyv koefitsiienta tertia kovzannia ta kuta obkhvatu kolodkoiu ta strichkoiu halmivnoho shkiva na rivnovahu vazhilnoi systemy. Bulletin National University of Water and Environmental Engineering, Technical Sciences, 2, 120-125.

Dovbnia, M. P. (2002). Teoretychne vyznachennia syly kovzannia pry kochenni. Problems of Tribology, 2, 103-106.

Kovalskiy, B. S. (1986). Poteri na blokakh kanatnykh polispastov. Construction and Road Building Machines, 8, 34-37.

Kozhevnikov, S. N. (1969). Teoriya mashin i mekhanizmov. Moscow: Mashinostroeniye.

Boltenkova, O. M., Davydov, O. Y., Yegorov, V. G., & Ulshin, S. V. (2013). Mekhanika. Soprotivleniye materialov (teoriya i praktika). Voronezh: Voronezh State University of Engineering Technologies.

Gumerova, K. S., Petukhov, N. P., Kotlyar, V. M., & Sidorin S. G. (2014). Prikladnaya mekhanika. Kazan: Kazan National Research Technological University.

Gryaznov, B. A., Bukhtiyarov, V. K., Kakuevitskiy, V. A., Aronovich, D. A., & Nalimov, Y. S. (2013). Primeneniye i prochnost polimernykh materialov pri izgotovlenii i remonte mashin i oborudovaniya. B. A. Lyashenko (Ed.). Kyiv: G.S. Pisarenko Institute for Problems of Strength of the National Academy of Sciences of Ukraine.

Sinenko, Y. G., & Konishcheva, O. V. (2015). Mekhanika. Krasnoyarsk: SibFU.

Bohomaz, V. M., Bondarenko, L. M., Hlavatskyi, K. T., & Sokol, K. O.(2015). Method of the drive power determination of the mechanisms of the bridge crane movement considering the rolling friction. Science and Transport Progress, 5 (59), 123-131. doi: 10.15802/stp2015/55335

Aleksandrov, M. P., Gokhberg, M. M., Kovin, A. A., Kulkova, N. N., Mazover, I. S., Nevzorov, L. A., & … Sokolov S.A. (1988). Spravochnik po kranam (Vol. 1-2). Kharakteristiki i konstruktivnyye skhemy kranov. Kranovyye mekhanizmy, ikh detali i uzly. Tekhnicheskaya ekspluatatsiya kranov (Vol. 2). M. M. Gokhberg (Ed.). Moscow: Mashinostroeniye.

Yakovlev, S. A., Bondarenko, L. N. (2003). Sootnosheniya mezhdu pokazatelyami soprotivleniya kacheniyu i skolzheniyu v uzlakh mashin. Mining, constructional, road and melioration machines, 62, 88-92.

Gao, A., Yun, Z., Zhidong, W., & Hao, L. (2017). A general friction model of discrete interactions for tendon actuated dexterous manipulators. Journal of Mechanisms and Robotics, 9 (4), 041019. doi: 10.1115/1.4036719

Makhkamov, K. K. (2017). Energy analysis of wear of sliding friction units. Journal of Friction and Wear, 38 (2), 168-172. doi: 0.3103/s1068366617020143

Rahaman, M. L., & Zhang, L. (2017). Size effect on friction and wear mechanisms of bulk metallic glass. Wear, 376-377, 1522-1527. doi: 10.1016/j.wear.2017.01.068

Tabor D. (1955). The mechanism of rolling friction: The elastic range. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 229 (1177), 198-220. doi: 10.1098/rspa.1955.0082


GOST Style Citations


   

  1. Вплив коефіцієнта тертя ковзання та кута обхвату колодкою та стрічкою гальмівного шківа на рівновагу важільної системи / В. М. Богомаз, М. Г. Брильова, Л. М. Бондаренко, К. Ц. Главацький // Вісн. нац. ун-ту водного госп-ва та природокористування. – Рівне : Вид-во НУВГПК, 2015. – № 2. – С. 120–125.
  2. Довбня, М. П. Теоретичне визначення сили ковзання при коченнi / М. П. Довбня // Проблеми трибологiї. – 2002. – № 2. – С. 103–106.
  3. Ковальский, Б. С. Потери на блоках канатных полиспастов / Б. С. Ковальский // Строительные и дорожные машины. – 1986. – № 8. – С. 34–37.
  4. Кожевников, С. Н. Теория машин и механизмов / С. Н. Кожевников. – Москва : Машиностроение, 1969. – 584 с.
  5. Механика. Сопротивление материалов (теория и практика) : учеб. пособие / О. М. Болтенкова, О. Ю. Давыдов, В. Г. Егоров, С. В. Ульшин. – Воронеж : Изд-во ВГУИТ, 2013. – 121 с.
  6. Прикладная механика : учеб. пособие / Х. С. Гумерова, Н. П. Петухов, В. М. Котляр, С. Г. Сидорин. – Казань : Изд-во КНИТУ, 2014. – 142 с.
  7. Применение и прочность полимерных материалов при изготовлении и ремонте машин и оборудования / Б. А. Грязнов [и др.]. – Киев : Ин-т проблем прочности имени Г. С. Писаренко НАН Украины, 2013. – 296 с.
  8. Синенко, Е. Г. Механика : учеб. пособие / Е. Г. Синенко, О. В. Конищева. – Красноярск : Изд-во СФУ, 2015. – 236 с.
  9. Способ определения мощности привода механизма передвижения мостового крана при учете трения качения / В. М. Богомаз, Л. М. Бондаренко, К. Ц. Главацкий, К. О. Сокол // Наука та прогрес транспорту. – 2015. – № 5 (59). – С. 123–131. doi: 10.15802/stp2015/55335.
  10. Справочник по кранам : в 2 т / М. П. Александров, М. М. Гохберг, А. А. Ковин [и др.]. – Ленинград : Машиностроение, 1988. – Т. 2. – 559 с.
  11. Яковлев, С. А. Соотношения между показателями сопротивления качению и скольжению в узлах машин / С. А. Яковлев, Л. Н. Бондаренко // Гірничі, будівельні, дорожні та меліоративні машини : зб. наук. пр. / Київ. нац. ун-т буд-ва і архітектури. – Київ, 2003. – Вип. 62. – С. 88–92.
  12. A general friction model of discrete interactions for tendon actuated dexterous manipulators / A. Gao, Y. Zou, Z. Wang, H. Liu // J. of Mechanisms and Robotics. – 2017. – Vol. 9. – Iss. 4. – P. 041019. doi: 10.1115/1.4036719.
  13. Makhkamov, K. Kh. Energy analysis of wear of sliding friction units / K. Kh. Makhkamov // J. of Friction and Wear. – 2017. – Vol. 38. – Iss. 2. – P. 168–172. doi: 0.3103/s1068366617020143.
  14. Rahaman, M. L. Size effect on friction and wear mechanisms of bulk metallic glass / M. L. Rahaman, L. Zhang // Wear. – 2017. – Vol. 376–377. – P. 1522–1527. doi: 10.1016/j.wear.2017.01.068.
  15. Tabor, D. The mechanism of rolling friction. II. The elastic range / D. Tabor // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. – 1955. – Vol. 229. – Iss. 1177. – P. 198–220. doi: 10.1098/rspa.1955.0082.


DOI: https://doi.org/10.15802/stp2017/109453

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)