ELASTIC NONLINEAR DYNAMICS OF MOTION OF SLIDE OF VERTICAL TURNING MACHINE FOR WORKING OF SOLID-ROLLED RAILWAY WHEELS

R. P. Pogrebnyak

Abstract


Purpose. The article is aimed to determine the conditions of a dynamic error formation of contour machine cutting of surface of the real railway wheel flange by the cup-tip tool and propose the ways of reducing the errors. Methodology. The problem was solved by the creation of dynamic nonlinear and elastic calculation model with further modeling of its loading by the external force factors. The values of forces were obtained by analytical and experimental methods. The calculation scheme of the equilibrium support is a nonlinear two-mass system, a dynamic model of slide - single-mass with one degree of freedom. The basis of the mathematical description of technological loads is the results of factory experiments, as well as analytical generalizations obtained as a result of the comparison of several schemes of the formation of the wheel flange. Analytical determination of the components of the cutting force takes into account the changes in the kinematic parameters of the cutting mode when the profiling is done using a shaped tool. Findings. During processing of the wheel flange the radial and axial components of the cutting forces that load slide and slide-block of machine are alternating. There are conditions in drive of slide and slide-block when the gaps appear, and it is possible at any profile geometry of the wheel. The peculiarities of loading of the slide and slide-block forming a flange (with biharmonic allowance) cause the occurrence of the processing areas where the gaps increase many times in drives of mechanical transmissions and error of forms increases. The dynamic system of the drive is quite tough and high-frequency and it is sensitive to the presence of gaps. Originality. The author created elastic nonlinear dynamic models of support and slide. In accordance with the model it is written and solved equations of motion of the masses and loading of the connections. The conditions of the stable motion were found. Practical value. It is determined by modeling the qualitative and quantitative terms of stable motion without gaps. It is recommended to change the weight of counterweight.


Keywords


railway wheel; railway wheel processing machines; dynamic loading; dynamic precision; gaps; vibrations

References


Vasilev, G. N. (1987). Avtomatizatsiya proyektirovaniya metallorezhushchikh stankov. Moscow: Mashinostroyeniye.

Haivoronskyi, O. A. (2016). Terms of ensuring quality of the railway wheels built up by welding. Science and Transport Progress, 5(65), 136-151. doi: 10.15802/stp2016/84078

Kolesa sutsilnokatani. Tekhnichni umovy, DSTU HOST 10761:2016 (2016).

Kedrov, S. S. (1978). Kolebaniya metallorezhushchikh stankov. Moscow: Mashinostroyeniye.

Kulik, V. K., Petrakov, Y. V., & Iotov, V. V. (1987). Progressivnyye protsessy obrabotki fasonnykh poverkhnostey. Kyiv: Tekhníka.

Levin, A. I. (1978). Matematicheskoye modelirovaniye v issledovaniyakh i proyektirovanii stankov. Moscow: Mashinostroyeniye.

Petrakov, Y. V., & Fedorenko, I. G. (1984). Konturnaya obrabotka fasonnykh poverkhnostey detaley. Metallorezhushchiye stanki, 12, 39-42.

Petrakov, Y. (2016). Simulation of chatter suppression for lathe machining. Journal of Mechanical Engineering of the National Technical University of Ukraine «Kyiv Polytechnic Institute», 2(77), 119-124.

Pogrebnyak, R. P. (2012). Experimental investigation of rolled blank shape for railway wheel. Proizvodstvo prokata, 2, 29-33.

Strutynskyi, V. B., & Perfilov, I. V. (2015). Vibratsiini protsesy mekhanichnoi obrobky [Monograph]. Kyiv: National Technical University of Ukraine «Kyiv Polytechnic Institute».

Strutynskyi, V. B. (2001). Matematychne modeliuvannia protsesiv ta system mekhaniky. Zhytomyr: Zhytomyr Institute of Engineering and Technology.

Gegg, B. C., Suh, C. S., & Luo, A. C. J. (2011). Machine Tool Vibrations and Cutting Dynamics. New York: Springer-Verlag. doi: 10.1007/978-1-4419-9801-9

Brecher, C., Fey, М., Tenbrock, С., & Daniels, М. (2016). Multipoint Constraints for Modeling of Machine Tool Dynamics. Journal of Manufacturing Science and Engineering, 138(5), 117-124. doi: 10.1115/1.4031771

Pogrebnyak, R. P. (2012). Load and shaping precision of a complex railroad-wheel surface. Russian engineering research, 32(4), 407-411. doi: 10.3103/S1068798X12040211


GOST Style Citations


  1. Васильев, Г. Н. Автоматизация проектирования металлорежущих станков / Г. Н. Васильев. – Москва : Машиностроение, 1987. – 280 с.
  2. Гайворонський, О. А. Умови забезпечення якості відновлених наплавленням залізничних коліс / О. А. Гайворонський // Наука та прогрес транспорту. – 2016. – № 5 (65). – С. 136–151. doi: 10.15802/stp2016/84078.
  3. ДСТУ ГОСТ 10761:2016. Колеса суцільнокатані. Технічні умови. – На заміну ГОСТ 10761-2004 та ГОСТ 9036-88. – Чинний від 2016–09–01. – Київ : Держспоживстандарт України, 2016. – 15с.
  4. Кедров, С. С. Колебания металлорежущих станков / С. С. Кедров. – Москва : Машиностроение, 1978. – 199 с.
  5. Кулик, В. К. Прогрессивные процессы обработки фасонных поверхностей / В. К. Кулик, Ю. В. Петраков, В. В. Иотов. – Київ : Техніка, 1987. – 176 с.
  6. Левин, А. И. Математическое моделирование в исследованиях и проектировании станков / А. И. Левин. – Москва : Машиностроение, 1978. – 184 с.
  7. Петраков, Ю. В. Контурная обработка фасонных поверхностей деталей / Ю. В. Петраков, И. Г. Федоренко // Металлорежущие станки : респ. межвед. науч.-техн. сб. – Киев, 1984. – Вып. 12. – С. 39–42.
  8. Петраков, Ю. В. Моделирование гашения колебаний при токарной обработке / Ю. В. Петраков // Вісн. нац. техн. ун-ту України «Київський політехнічний інститут». Серія: Машинобудування : зб. наук. пр. / Нац. техн. ун-т України «Київ. політехн. ін-т». – Київ, 2016. – № 2. – С. 119–124.
  9. Погребняк, Р. П. Экспериментальное исследование формы прокатанной заготовки железнодорожного колеса / Р. П. Погребняк // Производство проката. – 2012. – № 2. – С. 29–33.
  10. Струтинський, В. Б. Вібраційні процеси механічної обробки : монографія / В. Б. Струтинський, І. В. Перфілов // Нац. техн. ун-т України «Київ. політехн. ін-т». – Київ, 2015. – 579 c.
  11. Струтинський, В. Б. Математичне моделювання процесів та систем механіки / В. Б. Струтинський. – Житомир : ЖІТІ, 2001. – 612 с.
  12. Gegg, B. C. Machine Tool Vibrations and Cutting Dynamics/ B. C. Gegg, C. S. Suh, A. Luo. – New York : Springer, 2011. – 179 p. doi: 10.1007/978-1-4419-9801-9.
  13. Multipoint Constraints for Modeling of Machine Tool Dynamics / С. Brecher, М. Fey, С. Tenbrock, М. Daniels // Journal of Manufacturing Science and Engineering. – 2016. – Vol. 138 (5). – P. 117–124. doi: 10.1115/1.4031771.
  14. Pogrebnyak, R. Load and shaping precision of a complex railroad-wheel surface / R. Pogrebnyak // Russian engineering research. – New York : Allerton Press, Inc., 2012. – T. 32, No. 4. – P. 407–411. doi: 10.3103/S1068798X12040211.


DOI: https://doi.org/10.15802/stp2017/109606

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)