IMPROVEMENT OF MATHEMATICAL MODELS FOR ESTIMATION OF TRAIN DYNAMICS

Authors

DOI:

https://doi.org/10.15802/stp2017/118002

Keywords:

long train, train dynamics, mathematical models of longitudinal train oscillations, inter-car coupling modelling, science articles, longitudinal forces in the train, locomotive driving simulators

Abstract

Purpose. Using scientific publications the paper analyzes the mathematical models developed in Ukraine, CIS countries and abroad for theoretical studies of train dynamics and also shows the urgency of their further improvement. Methodology. Information base of the research was official full-text and abstract databases, scientific works of domestic and foreign scientists, professional periodicals, materials of scientific and practical conferences, methodological materials of ministries and departments. Analysis of publications on existing mathematical models used to solve a wide range of problems associated with the train dynamics study shows the expediency of their application. Findings. The results of these studies were used in: 1) design of new types of draft gears and air distributors; 2) development of methods for controlling the movement of conventional and connected trains; 3) creation of appropriate process flow diagrams; 4) development of energy-saving methods of train driving; 5) revision of the Construction Codes and Regulations (SNiP ΙΙ-39.76); 6) when selecting the parameters of the autonomous automatic control system, created in DNURT, for an auxiliary locomotive that is part of a connected train; 7) when creating computer simulators for the training of locomotive drivers; 8) assessment of the vehicle dynamic indices characterizing traffic safety. Scientists around the world conduct numerical experiments related to estimation of train dynamics using mathematical models that need to be constantly improved. Originality. The authors presented the main theoretical postulates that allowed them to develop the existing mathematical models for solving problems related to the train dynamics. The analysis of scientific articles published in Ukraine, CIS countries and abroad allows us to determine the most relevant areas of application of mathematical models. Practicalvalue. The practical value of the results obtained lies in the scientific validity and applied orientation of theoretical studies using mathematical models, the improvement of which will expand the range of problems to be solved, and increase the level of reliability of the results obtained.

Author Biographies

L. V. Ursulyak, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan

Dep. «Theoretical and Structural Mechanics», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (095) 008 70 53, e-mail lydm.urs@gmail.com

A. O. Shvets, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan

Dep. «Theoretical and Structural Mechanics», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (050) 214 14 19, e-mail angela_Shvets@ua.fm

References

Barbas, I.G. (1962). Analiticheskoye opredeleniye usiliy, voznikayushchikh v upryazhnykh priborakh pri dvizhenii cherez perelom profilya puti. Sbornik nauchnykh trudov DIITa, 42, 4-12. (in Russian)

Blokhin, Y. P., & Skalozub, V. V. (2002). Vybor rezhimov vedeniya poyezdov kak stokhasticheskaya zadacha vektornoy optimizatsii. Transport: Proceedings Scientific publication, 7, 28-31. (in Russian)

Blokhin, Y. P., & Manashkin, L. A. (1982). Dinamika poyezda (nestatsionarnyye prodolnyye kolebaniya) [Monograph].Moscow: Transport. (in Russian)

Blokhin, Y. P. (1958). O vliyanii neodnorodnosti poyezda na dinamicheskiye usiliya, voznikayushchiye v upryazhnykh priborakh pri troganii s mesta. Trudy DIITa, 26, 4-12. (in Russian)

Boldyrev, A. P., Gurov, A. M., & Fatkov, E. A. (2007). The promising characteristics of shock-absorbing devices in the train operating conditions. Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, 15, 146-153. (in Russian)

Boldyrev, A. P., & Gurov, A. M. (2014). Efficiency of using high energy-consumption cushioning devices in freight wagons. Transport Rossiyskoy Federatsii, 3(52), 43-44. (in Russian)

Vereskun, V.D., & Pritykin, D. E. (2014). Mnogomassovaya model podvizhnoy edinitsy dlya issledovaniya prodolnoy dinamiki gruzovogo poyezda. Vestnik RGUPS, 2, 16-27. (in Russian)

Voronova, Y. V., & Rychkov, N. P. (2015). Dinamika gruzovykh vagonov na krivykh malogo radiusa. Proceeding of the International Conference on Transport Infrastructure of the Siberian region, 2, 445-449. Retrieved from https://www.irgups.ru/sites/default/files/irgups/journal/tom_2_0.pdf (in Russian)

Zhukovskiy, N. Y. (1919). Rabota (usiliye) russkogo skvoznogo i amerikanskogo neskvoznogo tyagovogo pribora pri troganii poyezda s mesta i v nachale ego dvizheniya. Byulleten Eksperimentalnogo instituta putey soobshcheniya, 13, 31-57. (in Russian)

Vasilev, A. S., Boldyrev, A. P., Keglin, B. G., & Gurov, A. M. (2014). Research of freight car's longitudinal loading equipped new frictional absorbing devices. Bulletin of Bryansk State Technical University, 1, 12-17. (in Russian)

Karpychev, V. A., & Chuev, S. G. (2017). Umensheniye prodolnykh silovykh vozmushcheniy pri raspredelennom upravlenii tormozheniyem poyezda (RUTP). Tekhnika zheleznykh dorog, 1, 66-72. (in Russian)

Lazaryan, V. A., Blokhin, Y. P., Manashkin, L. A., & Belik, L. V. (1971). K voprosu o matematicheskom opisanii protsessov, proiskhodyashchikh pri perekhodnykh rezhimakh dvizheniya poyezdov s zazorami v upryazhi. Trudy DIITa, 103, 18-28. (in Russian)

Kompaniets, D.I.(2017). Tyazhelovesnoye dvizheniye kak faktor optimizatsii perevozochnogo protsessa. Proceedings of the International Scientific Conference Nauchnyye issledovaniya: teoriya, metodika i praktika, 1, 303-305. (in Russian)

Kossov, V. S., & Lunin, A. A. (2016). Studies of longitudinal dynamics and impact of articulated trains weighing 12600 t on the rail track. Tyazheloye Mashinostroeniye, 9, 21-26. (in Russian)

Lazaryan, V. A. (1949). Issledovaniye neustanovivshikhsya rezhimov dvizheniya poyezda.Moscow: Transzheldorizdat. (in Russian)

Lazaryan, V. A. (1953). Issledovaniya perekhodnykh rezhimov dvizheniya poyezdov pri sploshnom tormozhenii i pri perekhodakh cherez perelomy prodolnogo profilya puti. Trudy DIITa, 23, 5-23. (in Russian)

Lazaryan, V. A. (1956). Issledovaniya usiliy, voznikayushchikh pri perekhodnykh rezhimakh dvizheniya v sterzhnyakh s razlichnymi uprugimi nesovershenstvami. Trudy DIITa, 25, 5-50. (in Russian)

Lazaryan, V. A. (1952). K voprosu o vybore raschetnoy skhemy pri issledovanii perekhodnykh rezhimov dvizheniya poyezdov. Tekhnika zheleznykh dorog, 6, 17-19. (in Russian)

Lazaryan, V. A. (1948). O dinamicheskikh usiliyakh v upryazhnykh priborakh poyezda pri nemonotonnom izmenenii sily tyagi. Trudy DIITa, 19, 63-82. (in Russian)

Lazaryan, V. A. & Blokhin, Y. P. (1974). O matematicheskom modelirovanii dvizheniya poyezda po perelomam prodolnogo profilya puti. Trudy MIITa, 444, 83-123. (in Russian)

Lazaryan, V. A. (1973). O perekhodnykh rezhimakh dvizheniya poyezda. Trudy DIITa, 152, 3-43. (in Russian)

Lazaryan, V. A., Blokhin, Y. P., & Barbas, I.G. (1974). Obusiliyakh v gruzovykh poyezdakh pri tormozhenii lokomotiva pryamodeystvuyushchim tormozom. Trudy MIITa, 444, 67-73. (in Russian)

Lazaryan, V. A., Barbas, I.G., & Manashkin, L. A. (1964). Elektricheskoye modelirovaniye dvizheniya odnorodnykh poyezdov cherez perelomy prodolnogo profilya puti. Trudy DIITa, 50, 5-20. (in Russian)

Akulov, A. S., Zheleznov, K. I., Zabolotnyi, O. M., Ursulyak, L. V., Chabanyuk, E. V., Chernyaev, D. V., & Shvets, A. O. (2017). Modulnyi trenazher mashynista. Lokomotyv-Inform, 7-8, 42-49. (in Ukrainian)

Kurtikov, R. M., Sidrakov, A. A., Kuznetsova, Y. A., & Ivannikova, Y. A. (2016). Obespecheniye ekologicheskoy bezopasnosti zheleznodorozhnoy infrastruktury pri ekspluatatsii tyazhelovesnykh poyezdov. Proceedings of the International Scientific Conference Sovremennyye problemy proektirovaniya, stroitelstva i ekspluatatsii zheleznodorozhnogo puti, 191-194. (in Russian)

Shvets, A. A., Zheleznov, K. I., Akulov, A. S., Zabolotny, A. N., & Chabanyuk, E. V. (2016). Determination the permissible forces in assessing the lift resistant factor of freight cars in trains. Science and Transport Progress, 1(61), 189-192. doi: 10.15802/stp2016/61045. (in Russian)

Boldyrev, A. P., Zhirov, P. D., Vasilyev, A. S., & Borovikova, S. V. (2013). Assessment of overall performance of the frictional сeramic-metal elements of absorbing devices under various service conditions. Bulletin of Bryansk State Technical University, 2(38), 22-31. (in Russian)

Pudovikov, O. E., & Murov, S. A. (2015) Modelirovaniye rezhima regulirovochnogo tormozheniya dlinnosostavnogo poyezda. World of Transport and Transportation, 2(57), 28-33. (in Russian)

Blokhin, Y. P., Manashkin, L. A., Stambler, Y. L., Masleeva, L. G., Mikhaylichenko, V. M., & Granovskaya, N. I. (1986). Raschety i ispytaniya tyazhelovesnykh poyezdov.Moscow: Transport. (in Russian)

Sekerova, S. A., Adilkhanov, Y. G., & Musaev, Z. S. (2010). Analiz nauchno-issledovatelskikh rabot po prodolnoy dinamike gruzovogo poyezda. The Bulletin of KazAT, 6(67), 32-36. (in Russian)

Selenskaya, T. V., & Selenskiy, E. I. (2014). Quality of service and reliability of railway vehicle autocoupling shock absorbers operating in randomly grouped freight trains. Bulletin of Bryansk State Technical University, 2(42), 57-63. (in Russian)

Stupin, D. A., & Belyaev, V. I.(2016). Research of influence of energy consumption of draft gears on longitudinal forces in the tank car train. Vestnik of the Railway Research Institute, 75(3), 154-160. (in Russian)

Druzhinina, O. V., Sychev, V. P., Cherkashin, Y. M., & Kachalkin, V. V. (2014) Teoreticheskiye aspekty otsenki bezopasnosti sistem zheleznodorozhnogo transporta. Vnedreniye sovremennykh konstruktsiy i peredovykh tekhnologiy v putevoye khozyaystvo, 7(7), 168-181. (in Russian)

Fatkov, E. A. (2009) Programmnyy kompleks dlya modelirovaniya i rascheta zadach prodolnoy dinamiki poezda. New Materials and Technologies in Machinebuilding, 10, 130-133. (in Russian)

Feoktistov, V. P., Nevinsky, A. V., & Nazarov, D. V. (2015) Uchet ogranicheniy po prodolnoy dinamike pri regulirovanii puskovogo rezhima elektropoyezdov. World of Transport and Transportation, 3(58), 94-100. (in Russian)

Blokhin, Y. P., Boychevskiy, O. G., Grebenyuk, P. T., & Feoktistov, I.B. (1970). Eksperimentalnyye issledovaniya prodolnykh usiliy v gruzovykh poyezdakh massoy do 10 tys. tonn pri perekhodnykh rezhimakh dvizheniya. Trudy TsNII MPS, 425, 55-85. (in Russian)

Yazykov, V. N. (2015). Numerical simulation of train dynamics in real time mode. Bulletin of Bryansk State Technical University, 2(46), 123-126. (in Russian)

Yang, L., Kang, Y., Luo, S., & Fu, M. (2015). Assessment of the curving performance of heavy haul trains under braking conditions. Journal of Modern Transportation, 23(3), 169-175. doi: 10.1007/s40534-015-0075-1. (in English)

Castagnetti, F., & Toubol, A. (Eds.) (2014). The MARATHON 1500 m train opening up new horizons in rail freight transport in Europe. Brussels: Drifosett. (in English)

Dos Santos, G. F. M., & Barbosa, R. S. (2016). Safety analysis of a railway car under the periodic excitation from the track. Cogent Engineering, 3(1), 1-12. doi: 10.1080/23311916.2016.1263027. (in English)

Milković, D., Simić, G., Tanasković, J., Jakovljević, Ž., & Lučanin, V. (2015). Experimental and numerical determination of the wheel-rail angle of attack. Facta Universitatis, Series Mechanical Engineering, 13(2), 123-131. (in English)

Ivanov, V., & Savitski, D. (2015). Systematization of Integrated Motion Control of Ground Vehicles. IEEE ACCESS, 3, 2080-2099. doi: 10.1109/ACCESS.2015.2496108. (in English)

Lee, D. C., & Kang, C.-G. (2016). A mechanical brake hardware-in-the-loop simulation of a railway vehicle that accounts for hysteresis and pneumatic cylinder dynamics. Advances in Mechanical Engineering, 7 (11), 1-11. doi: 10.1177/1687814015616086. (in English)

CER. (2016). Longer trains Facts & Experiences in Europe: Results of the CER working group on longer and heavier trains. Brussels: Community of European railway and infrastructure companies. (in English)

Myamlin, S., Lunys, O., Neduzha, L., & Kyryl'chuk, O. (2017). Mathematical Modeling of Dynamic Loading of Cassette Bearings for Freight Cars. Proceedings of 21st International Conference on Transport Means 2017, Lithuania, 3, 973-976. (in English)

Lin, F., Liu, S., Yang, Z., Zhao, Y., Yang, Z., & Sun, H. (2016). Multi-Train Energy Saving for Maximum Usage of Regenerative Energy by Dwell Time Optimization in Urban Rail Transit Using Genetic Algorithm. Energies, 9 (208), 1-21. doi: 10.3390/en9030208. (in English)

Naeimi, M., Tatari, M., & Esmaeilzadeh, A. (2015). Dynamics of the monorail train subjected to the braking on a straight guideway bridge. Archive of Mechanical Engineering, 62 (3), 363-375. doi: 10.1515/meceng-2015-0021. (in English)

Blochinas, E., Dailydka, S., Lingaitis, L., & Ursuliak, L. (2016). Nestacionarieji ir kvazistatiniai geležinkelio traukinių judėjimo režimai. Vilnius: Technika. (in Lithuanian)

Niu, G., & Huang, X. (2017). Failure Prognostics of Locomotive Electro-Pneumatic Brake Based on Bond Graph Modeling. IEEE Access, 5, 15030-15039. doi: 10.1109/ACCESS.2017.2734120. (in English)

Frilli, A., Meli, E., Nocciolini, D., Pugi, L., & Rindi, A. (2015). Object oriented simulation of longitudinal trair dynamics efficient tools to optimize sustainability and efficiency of railway systems. AEIT International Annual Conference, 14-16 Oct. 2015, Naples, Italy. doi: 10.1109/AEIT.2015.7415257. (in English)

Qi, Z., Huang, Z., & Kong, X. (2012). Simulation of longitudinal dynamics of long freight trains in positioning operations. Vehicle System Dynamics, 50(9), 1409-1433. doi: 10.1080/00423114.2012.661063. (in English)

Ceraolo, M., Lutzemberger, G., Frilli, A., & Pugi, L. (2016). Regenerative braking in high speed railway applications: Analysis by different simulation tools. 16th International Conference on Environment and Electrical Engineering (EEEIC), 7-10 June 2016, Florence, Italy, 1-5. doi: 10.1109/EEEIC.2016.7555474. (in English)

Shabana, A. A., Aboubakr, A. K., Ding, L. (2012). Use of the non-inertial coordinates in the analysis of train longitudinal forces. Journal of Computational and Nonlinear Dynamics, 7(1), 1-10. doi: 10.1115/1.4004122. (in English)

Stewart, M. F., Punwani, S. K., Andersen, D. R., Booth, G. F., Singh, S. P., Prabhakaran, A. (2015). Simulation of Longitudinal Train Dynamics: Case Studies Using the Train Energy and Dynamics Simulator (TEDS). Joint Rail Conference, San Jose, California, USA, March 23-26, 2015. doi: 10.1115/JRC2015-5760. (in English)

Huang, C., Luo, K., Dang, J., Qin, K., & Li, D. (2017). Spatial Kinetics Model of Supercavitating Vehicles Reflecting Conic-Like Oscillation. Mathematical Problems in Engineering, 2017, 1-12. doi: 10.1155/2017/3671618. (in English)

Su, S., Tang, T., & Wang, Y. (2016). Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model. Energies, 9(2), 2-19. doi: 10.3390/en9020105. (in English)

Tavan, N., Tavan, M., & Hosseini, R. (2015). An optimal integrated longitudinal and lateral dynamic controller development for vehicle path tracking. Latin American Journal of Solids and Structures, 12(6), 1006-1023. doi: 10.1590/1679-78251365. (in English)

Lin, X., Wang, Q., Wang, P., Sun, P., & Feng, X. (2017). The Energy-Efficient Operation Problem of a Freight Train Considering Long-Distance Steep Downhill Sections. Energies, 10 (6), 1-26. doi: 10.3390/en10060794. (in English)

Ursuljak, L., & Romanjuk, Y. (2011). Оn the problem of dynamic response of the long trains including joint ones with the liquid cargo. Proceedings of the 7th International Scientific Conference Transbaltica 2011, May 5-6, 2011, Vilnius, Lithuania, 269-275. Retrieved from http://leidykla.vgtu.lt/conferences/Transbaltica_2011/pdf/052.pdf. (in English)

Varazhun, I., Shimanovsky, A., & Zavarotny, A. (2016). Determination of Longitudinal Forces in the Cars Automatic Couplers at Train Electrodynamic Braking. Proceedings of the 9th international scientific conference Transbaltica-2016, May 7-8, 2016, Vilnius, Lithuania, 134, 415-421. https://doi.org/10.1016/j.proeng.2016.01.032" target="_blank">doi: 10.1016/j.proeng.2016.01.032. (in English)

Wang, X., Tang, T., & He, H. (2017). Optimal control of heavy haul train based on approximate dynamic programming. Advances in Mechanical Engineering, 9(4), 1-15. doi: 10.1177/1687814017698110. (in English)

Wang, X., & Tang, T. (2017). Optimal operation of high-speed train based on fuzzy model predictive control. Advances in Mechanical Engineering, 9(3), 1-14. doi: 10.1177/1687814017693192. (in English)

Wei, W., & Hu, Y. (2012). Influence of train tail exhaust device on longitudinal force of train. Journal of Traffic and Transportation Engineering, 12(5), 43-49. (in English)

Wu, Q., Luo, S., & Cole, C. (2014). Longitudinal dynamics and energy analysis for heavy haul trains. Journal of Modern Transportation, 22(3), 127-136. doi: 10.1007/s40534-014-0055-x. (in English)

Downloads

Published

2017-12-08

How to Cite

Ursulyak, L. V., & Shvets, A. O. (2017). IMPROVEMENT OF MATHEMATICAL MODELS FOR ESTIMATION OF TRAIN DYNAMICS. Science and Transport Progress, (6(72), 70–82. https://doi.org/10.15802/stp2017/118002

Issue

Section

ROLLING STOCK AND TRAIN TRACTION