DOI: https://doi.org/10.15802/stp2018/123079

MATHEMATICAL MODEL OF DPKR-2 DYZEL TRAIN CAR

S. A. Kostritsa, Y. H. Sobolevska, A. Y. Kuzyshyn, А. V. Batih

Abstract


Purpose. In order to study the dynamic phenomena arising when rolling stock moves along a rail track both in the straight and curved track sections, the article is aimed to construct a mathematical model of DPKr-2 diesel train car. It will be constructed on the basis of mechanical model of this car of Kryukiv Railway Car Building Works. Methodology. To construct a mathematical model a system of 38 differential equations of the diesel train movement is formed. When it is used a pneumatic spring in the core stage of spring suspension, its equivalent mechanical mo-del is presented as Kelvin-Voigt knot. It includes a parallel elastic element and an element of viscous friction. Rail track flexibility is taken into account by elastic and dissipative elements. During simulation it was assumed that the wheel pair and the track weight interacting with it were moving intact. Geometric inequalities of the left and right rails were accepted as disturbances when studying the forced vertical and horizontal oscillations. Findings. On the basis of the adopted mechanical model of the diesel train car we constructed the mathematical model consisting of 38 differential equations of motion . Originality. For the first time, for the DPKr-2 diesel train car we developed its spatial mathematical model taking into account the features of the interaction of individual elements of its construction and the possibilities of the rail track depression. When constructing the mathematical model, it was proposed to take into account the flexibility of the rail track by elastic and dissipative elements. Originality. The mathematical model of the diesel train car will be used for studying the dynamic phenomena and determining the dynamic loads of structural elements during operation. The study of these phenomena is necessary for optimal choice of the scheme and parameters of rolling stock equipment, in particular antivibration devices (spring suspension, horizontal, longitudinal and transverse joints of wheel pairs with the bogie frame, bogie with the body), as well as for reduction of dynamic forces acting on the elements of rolling stock construction and rail track.


Keywords


mathematical model; diesel train; system of differential equations; pneumatic spring; spring suspension

References


Ibragimov, M. A., Kiselev, V. I., Ramlov, V. A., & Skalin, A. V. (2005). Dinamika lokomotivov: Uchebnoe posobie. Moscow: RGOTUPS. (in Russian)

Kutsenko, S. M. (Ed.) (1975). Dinamika ustanovivshegosya dvizheniya lokomotivov v krivykh. Kharkiv: Vysshaya shkola. (in Russian)

Doronin, S. V. (2009). Dvizhenie mnogosektsionnykh lokomotivov v krivykh malogo radiusa: Monografiya.Khabarovsk: DVGUPS Publisher. (in Russian)

Ibraeyv, B. M. (2009). Parametry pnevmaticheskogo ressornogo podveshivaniya relsovogo avtobusa dlya Kazakhstanskoy zheleznoy dorogi. (Avtoreferat dissertatsii kandidata tekhnicheskikh nauk).Moscow:MoscowStateUniversity of Railway Engineering. (in Russian)

Kuzyshyn, A. Y., & Batih, A. V. (2017). Construction of mechanical model of the diesel-train DPKr-2 car and its features. Science and Transport Progress, 6(72), 20-29. doi: 10.15802/stp2017/117936. (in Ukranian)

Maznev, A. S., & Yevstafev, A. M. (2013). Konstruktsii i dinamika elektricheskogo podvizhnogo sostava: Monografiya.Moscow: FGBOU «Uchebno-metodicheskiy tsentr po obrazovaniyu na zheleznodorozhnom transporte». (in Russian)

Reidemeister, O. H., & Kivisheva, A. V. (2016). Dependence of air spring parameters on throttle resistance. Science and Transport Progress, 2(62), 157-164. doi: 10.15802/stp2016/67339. (in English)

Sokol, E. N. (2011). Zheleznodorozhno-transportnoe proisshestvie i ego mekhanizm (Sudebnaya ekspertiza. Elementy teorii i praktiki): Monografiya. Lvіv: PAІS. (in Russian)

Sokol, E. N., Pereymybida, A. A., & Radkevich, D. A. (2006). «Klassicheskiy» skhod s relsov podvizhnogo sostava: Methodical manual. Kyiv: Feniks. (in Russian)

Sokol, E. N. (2007). Krusheniya zheleznodorozhnykh poezdov (Sudebnaya ekspertiza. Elementy teorii i praktiki): Monografiya. Kyiv: Feniks. (in Russian)

Sokol, E. N. (2004). Skhody s relsov i stolknoveniya podvizhnogo sostava (Sudebnaya ekspertiza. Elementy teorii i praktiki). Kyiv: Transport Ukrainy. (in Russian)

Trofimovich, V. V. (2004). Dinamika elektropodvizhnogo sostava: Kurs lektsiy.Khabarovsk: DVGUPS. (in Russian)

Björling, Y. Xi, M., Shi, Y., Mao, J., & Larsson, R. (2017). Application of an inclined, spinning ball-on-rotating disc apparatus to simulate railway wheel and rail contact problems. Wear, 374-385, 46-53. doi: 10.1016/j.wear.2016.12.034. (in English)

Kalker, J. J. (1967). On the rolling contact of two elastic bodies in the presence of dry friction.Delft:University ofTechnology. (in English)

Guiral, A., Alonso, A., Baeza, L., & Giménez, J. G. (2013). Non-steady state modeling of wheel-rail contact problem. Vehicle System Dynamics, 51(1), 91-108. doi: 10.1080/00423114.2012.713499. (in English)

Alonso, A., Guiral, A., Baeza, L., & Iwnicki, S. (2014). Wheel-railcontact: experimental study of the creep forces-creepage relationships. Vehicle System Dynamics, 52(1), 469-487. doi: 10.1080/00423114.2014.907923. (in English)


GOST Style Citations


  1. Динамика локомотивов : учеб. пособие / М. А. Ибрагимов, В. И. Киселев, В. А. Рамлов, А. В. Скалин. – Москва : РГОТУПС, 2005. – 128 с.
  2. Динамика установившегося движения локомотивов в кривых / С. М. Куценко, А. Э. Руссо, Э. П. Елбаев [и др.] ; под ред. С. М. Куценко. – Харьков : Высш. шк., 1975. – 132 с.
  3. Доронин, С. В. Движение многосекционных локомотивов в кривых малого радиуса : монография / С. В. Доронин. – Хабаровск : Изд-во ДВГУПС, 2009. – 220 с.
  4. Ибраев, Б. М. Параметры пневматического рессорного подвешивания рельсового автобуса для Казахстанской железной дороги : автореф. дис. … канд. техн. наук : 05.22.07 / Ибраев Бейбит Максутович ; Моск. гос. ун-т путей сообщения. – Москва, 2009. – 24 с.
  5. Кузишин, А. Я. Побудова механічної моделі вагона дизель-поїзда ДПКр-2 та її особливості / А. Я. Кузишин, А. В. Батіг // Наука та прогрес транспорту. – 2017. – № 6 (72). – С. 20–29. doi: 10.15802/stp2017/117936.
  6. Мазнев, А. С. Конструкции и динамика электрического подвижного состава : монография / А. С. Мазнев, А. М. Евстафьев. – Москва : ФГБОУ «Учеб.-метод. центр по образованию на ж.-д. трансп.», 2013. – 248 с.
  7. Рейдемейстер, А. Г. Зависимость свойств пневматической рессоры от пневматического сопротивления дросселя / А. Г. Рейдемейстер, А. В. Кивишева // Наука та прогрес транспорту. – 2016. – № 2 (62). – С. 157–164. doi: 10.15802/stp2016/67339.
  8. Сокол, Э. Н. Железнодорожно-транспортное происшествие и его механизм (Судебная экспертиза. Элементы теории и практики) : монография / Э. Н. Сокол. – Львов : ПАІС, 2011. – 376 с.
  9. Сокол, Э. Н. «Классический» сход с рельсов подвижного состава : метод. пособие / Э. Н. Сокол, А. А. Переймыбида, Д. А. Радкевич ; под ред. Э. Н. Сокола. – Киев : Феникс, 2006. – 168 с.
  10. Сокол, Э. Н. Крушения железнодорожных поездов (Судебная экспертиза. Элементы теории и практики) : монография / Э. Н. Сокол. – Киев : Феникс, 2007. – 355 с.
  11. Сокол, Э. Н. Сходы с рельсов и столкновения подвижного состава (Судебная экспертиза. Элементы теории и практики) / Э. Н. Сокол. – Киев : Транспорт України, 2004. – 386 с.
  12. Трофимович, В. В. Динамика электроподвижного состава : курс лекций / В. В. Трофимович. – Хабаровск : Изд-во ДВГУПС, 2004. – 94 с.
  13. Application of an inclined, spinning ball-on-rotating disc apparatus to simulate railway wheel and rail contact problems / Y. Xi, M. Björling, Y. Shi, J. Mao, R. Larsson // Wear. – 2017. – Vol. 374–375. – P. 46–53. doi: 10.1016/j.wear.2016.12.034.
  14. Kalker, J. J. On the rolling contact of two elastic bodies in the presence of dry friction : Ph.D. Thesis / J. J. Kalker ;UniversityofTechnology. –Delft, 1967. – 112 p.
  15. Non-steady state modelling of wheel–rail contact problem / A. Guiral, A. Alonso, L. Baeza, J. G. Giménez // Vehicle System Dynamics. – 2013. – Vol. 51. – Iss. 1. – P. 91–108. doi: 10.1080/00423114.2012.713499.
  16. Wheel–rail contact: experimental study of the creep forces–creepage relationships / A. Alonso, A. Guiral, L. Baeza, S. Iwnicki // Vehicle System Dynamics. – 2014. – Vol. 52. – Iss. sup1. – P. 469–487. doi: 10.1080/00423114.2014.907923.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)