DOI: https://doi.org/10.15802/stp2018/124882

MODELING OF BIOLOGICAL WASTEWATER TREATMENT ON THE BASIS OF QUICK-COMPUTING NUMERICAL MODEL

M. M. Biliaiev, M. V. Lemesh

Abstract


Purpose. The scientific paper involves the development of quick computing numerical model for prediction of output parameters of aeration tank. The numerical model may be used in predicting the effectiveness of aeration tank under different regimes of work. Methodology. To simulate the process of biological wastewater treatment in aeration tank numerical models were developed. The flow field in the aeration tank is simulated on the basis of potential flow model. 2-D transport equations are used to simulate substrate and sludge dispersion in the aeration tank. To simulate the process of biological treatment simplified model. For the numerical integration of transport equations implicit difference scheme was used. The difference scheme is built for splitting transport equations. Splitting of transport equation into two equations is carried out at differential level. The first equation of splitting takes into account the sludge or substrate movement along trajectories. The second splitting equation takes into account the diffusive process of substrate or sludge. To solve the splitting equations implicit difference scheme was used. For the numerical integration of potential flow equation the implicit scheme of conditional approximation was used. On the basis of constructed numerical model computer experiment was performed to investigate the process of biological treatment in aeration tank. Findings. Quick computing numerical model to simulate the process of biological treatment in the aeration tank was developed. The model can be used to obtain aeration tank parameters under different regimes of work. The developed model takes into account the geometrical form of the aeration tank. Originality. The numerical model which takes into account the geometrical form of aeration tank and fluid dynamics process was developed; the model takes into account substrate and sludge transport in aeration tank and process of biological treatment. Practical value. Efficient numerical model, so called «diagnostic models» was proposed for quick calculation of biological treatment process in aeration tank.


Keywords


biological treatment; numerical simulation; aeration tank

Full Text:

PDF

References


Biliaiev, N. N., & Kozachina, V. A. (2015). Matematicheskoe modelirovanie massoperenosa v gorizontalnykh otstoynikakh. Dnepropetrovsk: Aktsent PP. (In Russian)

Biliaiev, N. N., & Nagornaya, E. K. (2012). Matematicheskoe modelirovanie massoperenosa v otstoynikakh sistem vodootvedeniya. Dnepropetrovsk: Novaya ideologiya. (In Russian)

Gornostal, S. A., & Uvarov, Yu. V. (2011). Issledovanie zavisimosti kontsentratsii zagryazneniy v ochishchennoy vode na vykhode iz aerotenka v protsesse biologicheskoy ochistki. Problemy nadzvychainykh sytuatsіi: zbіrnyk naukovykh prats, 14, 65-69. (In Russian)

Kozachek, A. V., Avdashin, I. M., & Luzgachev, V. A. (2014). Issledovanie matematicheskoy modeli protsessa aerobnoy ochistki stochnykh vod kak stadiya otsenki kachestva okruzhayushchey vodnoy sredy. Vestnik Tambovskogo tekhnicheskogo universiteta. Seriya: Yestestvennye i tekhnicheskie nauki, 19(5), 1683–1685. (In Russian)

Kolobanov, S. K., Yershov, A. V., & Kigel, M. Ye. (1997). Proektirovanie ochistnykh sooruzheniy kanalizatsii. Kiev: Budіvelnik. (In Russian)

Oliinyk, O. Ya., & Airapetyan, T. S. (2015). The modeling of the clearance of waste waters from organic pollutions in bioreactors-aerotanks with suspended (free flow) and fixed biocenoses. Dopovidi natsionalnoi aka-demii nauk Ukrainy, 5, 55-60. doi: 10.15407/dopovidi2015.05.055 (In Ukranian)

Karelin, Ya. A., Zhukov, D. D., Zhurov, V. N., & Repin, B. N. (1973). Ochistka proizvodstvennykh stochnykh vod v aerotenkakh. Moscow: Stroyizdat. (In Russian)

Sviatenko, A. I., & Kornienko, L. M. (2009). Vazhlyvist urakhuvannia osoblyvostei biolohichnoho ochyshchennia v aerotenkakh dlia polipshennia pokaznykiv yikh roboty. Ekolohichna bezpeka, 4(8), 93–96. (In Ukranian)

Oleynik, Ya. A., Kalugin, Yu. I., Stepovaya, N. G., & Zyablikov, S. M. (2004). Teoreticheskiy analiz protsessov osazhdeniya v sistemakh biologicheskoy ochistki stochnykh vod. Prikladna gіdromekhanіka, 6(78), 4, 62-67. (In Russian)

Biliaiev, M. M., & Kozachyna, V. A. (2015). Numerical determination of horizontal settlers performance. Science and Transport Progress, 4(58), 34-43. doi: 10.15802/STP2015/49201. (In English)

Foat, T. G., Nally, J., & Parker, S. T. (2017). Investigating a selection of mixing times for transient pollutants in mechanically ventilated, isothermal rooms using automated computational fluid dynamics analysis. Building and Environment, 118, 313-322. doi: dx.doi.org/10.1016/j.buildenv.2017.01.011. (In English)

Hadad, H., & Ghaderi, J. (2015). Numerical Simulation of the Flow Pattern in the Aeration Tank of Sewage Treatment System by the Activated Sludge Process Using Fluent Program. Biological Forum, 7(1), 382-393. (In English)

Ilie, M., Robescu, D. N., & Chita, G. (2009). Modeling and simulation of Organic Matter Biodegradation Processes in Aeration Tanks with Activated Sludge. Revista de chimie (Bucureti-România), 60(5), 529-532. (In English)

Kozachyna, V. A. (2016). Investigation of admixture sedimentation in the horizontal settler. Science and Transport Progress, 4(64), 7-14. doi: 10.15802/stp2016/77827. (In English)

Mocanu, C. R., & Mihailescu, R. (2012). Numerical simulations of wastewater treatment aeration processes. U.P.B. Scientific Bulletin, Series D, 74(2), 191-198. (In English)

Masmoudi, S., Kallel, A., Taieb, D., & Kachouri, A. (2017). Modeling based decision for smart city environmental alert system for accidental air pollution. International Conference on Smart, Monitored and Controlled Cities (SM2C), Kerkennah, Tunisia, February, 17-19, 96-100, doi: 10.1109/SM2C.2017.8071826. (In English)

Ki-Eun Kim, Ja Eun Jung, Yunah Lee, & Dong Soo Lee (2018). Ranking surface soil pollution potential of chemicals from accidental release by using two indicators calculated with a multimedia model (SoilPCA). Ecological Indicators, 85, 664-673. doi: //doi.org/10.1016/j.ecolind.2017.11.010. (In English)


GOST Style Citations


  1. Беляев, Н. Н. Математическое моделирование массопереноса в горизонтальных отстойниках / Н. Н. Беляев, В. А. Козачина. – Днепропетровск : Акцент ПП, 2015. – 115 с.
  2. Беляев, Н. Н. Математическое моделирование массопереноса в отстойниках систем водоотведения / Н. Н. Беляев, Е. К. Нагорная. – Днепропетровск : Новая идеология, 2012. – 112 с.
  3. Горносталь, С. А. Исследование зависимости концентрации загрязнений в очищенной воде на выходе из аэротенка в процессе биологической очистки / С. А. Горносталь, Ю. В. Уваров // Проблеми надзвичайних ситуацій : зб. наук. пр. – Харків, 2011. – Вип. 14. – С. 65–69.
  4. Козачек, А. В. Исследование математической модели процесса аэробной очистки сточных вод как стадия оценки качества окружающей водной среды / А. В. Козачек, И. М. Авдашин, В. А. Лузгачев // Вестн. Тамбов. техн. ун-та. Серия: Естественные и технические науки. – 2014. – Т. 19, вып. 5. – С. 1683–1685.
  5. Колобанов, С. К. Проектирование очистных сооружений канализации / С. К. Колобанов, А. В. Ершов, М. Е. Кигель. – Киев : Будівельник, 1997. – 224 с.
  6. Олійник, О. Я. Моделювання очистки стічних вод від органічних забруднень в біореакторах-аеротенках зі зваженим (вільно плаваючим) і закріпленим біоценозом / О. Я. Олійник, Т. С. Айрапетян // Доп. нац. акад. наук України. – 2015. – № 5. – С. 55–60. doi: 10.15407/dopovidi2015.05.055.
  7. Очистка производственных сточных вод в аэротенках / Я. А. Карелин, Д. Д. Жуков, В. Н. Журов, Б. Н. Репин. – Москва : Стройиздат, 1973. – 223 с.
  8. Святенко, А. І. Важливість урахування особливостей біологічного очищення в аеротенках для поліпшення показників їх роботи / А. І. Святенко, Л. М. Корніенко // Екологічна безпека. – 2009. – № 4 (8). – С. 93–96.
  9. Теоретический анализ процессов осаждения в системах биологической очистки сточных вод / А. Я. Олейник, Ю. И. Калугин, Н. Г. Степовая, С. М. Зябликов // Прикладна гідромеханіка. – 2004. – Т. 6 (78), № 4. – С. 62–67.
  10. Biliaiev, M. M. Numerical determination of horizontal settlers performance / M. M. Biliaiev, V. A. Kozachyna // Наука та прогрес транспорту. – 2015. – № 4 (58). – P. 34–43. doi: 10.15802/STP2015/49201.
  11. Foat, T. G. Investigating a selection of mixing times for transient pollutants in mechanically ventilated, isothermal rooms using automated computational fluid dynamics analysis / T. G. Foat, J. Nally, S. T. Parker // Building and Environment. – 2017. – Vol. 118. – Р. 313–322. doi: 10.1016/j.buildenv.2017.01.011.
  12. Hadad, H. Numerical Simulation of the Flow Pattern in the Aeration Tank of Sewage Treatment System by the Activated Sludge Process Using Fluent Program / H. Hadad, J. Ghaderi // Biological Forum. – 2015. – Vol. 7 (1). – P. 382–393.
  13. Ilie, M. Modeling and simulation of Organic Matter Biodegradation Processes in Aeration Tanks with Activated Sludge / M. Ilie, D. N. Robescu, G. Chita // Revista de chimie (Bucureti-România). – 2009. – Vol. 60, Nо. 5. – P. 529–532.
  14. Kozachyna, V. A. Investigation of admixture sedimentation in the horizontal settler / V. A. Kozachyna // Наука та прогрес транспорту. – 2016. – № 4 (64). – P. 7–14. doi: 10.15802/stp2016/77827.
  15. Mocanu, C. R. Numerical simulations of wastewater treatment aeration processes / C. R. Mocanu, R. Mihailescu // U.P.B. Scientific Bulletin. Series D. – 2012. – Vol. 74. – Iss. 2. – P. 191–198.
  16. Modeling based decision for smart city environmental alert system for accidental air pollution / Sahar Masmoudi, Amjad Kallel, Dalila Taieb, Abdenaceur Kachouri / 2017 Intern. Conf. on Smart, Monitored and Controlled Cities (SM2C) : Conf. Paper (February, 17-19, 2017). – Kerkennah, Tunisia, 2017. – Р. 96–100. doi: 10.1109/SM2C.2017.8071826.
  17. Ranking surface soil pollution potential of chemicals from accidental release by using two indicators calculated with a multimedia model (SoilPCA) / Ki-Eun Kim, Ja Eun Jung, Yunah Lee, Dong Soo Lee // Ecological Indicators. – 2018. –Vol. 85. – Р. 664–673. doi: 10.1016/j.ecolind.2017.11.010.

 





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)