DOI: https://doi.org/10.15802/stp2018/126321

THERMAL TREATMENT OF SOLID WASTE GENERATED BY RAILWAY TRANSPORT

O. P. Krot, O. I. Rovenskyi, V. V. Koniev

Abstract


Purpose. The solid waste management system in Ukraine consists from the land disposal of waste. In this case, there is no control over environmental pollution, which in turn leads to environmental risks. A considerable amount of solid waste is formed at the railway transport enterprises. The solution of the problem of the elimination of wastes generated at large railway stations and in the process of servicing trains, namely directly at the place of their formation, is considered in this work. Methodology. The authors propose to use mobile waste processing plants, which eliminate the negative impact of the process of accumulation of solid industrial and municipal waste on the human habitat; while they can serve a certain number of waste producers. The study was conducted on a waste processing plant (WPP-300) located in Kharkiv on the Southern Railway. Findings. The design and purpose of the main units of waste processing plant are described. The bottom ash after incineration of solid waste accounts for 5-10 % of the initial volume of waste and corresponds to the safe IVth class of the waste classification catalog. Multi-stage thermal catalytic cleaning of waste gases provides concentration of harmful substances, including dioxin group within the limits of permissible norms. For complete combustion of all components of the waste, the temperature in the furnace was 850-900 ºC, the presence of flue gases in the afterburner at 1100-1200 ºC for at least two seconds, the defined excess air 1.4. Originality. The authors for the first time conducted a study of the parameters of incineration of various elemental wastes. We calculated the total theoretical volume of combustion products on a mobile waste-processing complex. Practical value. The use of a mobile incineration plant allows solving the problem of solid domestic waste disposal. As shown by the practice of its operation, such measures are justified and are not only economically viable, but also environmentally friendly. The results of the work allow estimating the amount of waste gases at various morphological compositions of the waste of the railway transport.


Keywords


municipal solid waste; mobile waste recycling complex; railway transport; waste gases; incineration; material balance

References


Bezovska, M. S., Plakhotnyk, V. M., & Drabkina, A. K. (2007). Upravlinnia povodzhennia z vidkhodamy vahonnykh pasazhyrskykh depo na Prydniprovskii zaliznytsi. Transactions of Kremenchuk Mykhailo Ostrohradskyi National University, 1(42), 1, 115-118. (in Ukranian)

Krot, O. P., & Rovenskyi, O. I. (2018). Modeling of Installations with a Rotary Kiln for Thermal Decontamination of Wastes. Problemele energeticii regionale, 1(36), 44-57. doi: 10.5281/zenodo.1217255 (in Russian)

Sister, V. G., Mirnyy, A. N., Skvortsov, L. S., Abramov, N. F., & Nikogosov, K. N. (2001). Tverdyye bytovyye otkhody (sbor, transport i obezvrezhivaniye): Spravochnik. Moscow: Akademiya kommunalnogo khozyaystva imeni K. D. Panfilova. (in Russian)

Zhao, L., Giannis, A., Lam, W.-Y., Lin, S.-X., Yin, K., Yuan, G.-A., & Wang, J.-Y. (2016). Characterization of Singapore RDF resources and analysis of their heating value. Sustainable Environment Research, 1(26), 51-54. doi:10.1016/j.serj.2015.09.003 (in English)

Fu-min, R., Feng, Y., Ming, G., & Min, Y. (2010). Combustion characteristics of coal and refuse from passenger trains. Waste Management, 30(7), 1196-1205. doi: 10.1016/j.wasman.2009.12.023 (in English)

Sharma, M., Neog, K., Sugam, R. K., & Ramji, A. (2016). Decentralised Waste Management in Indian Railways: A Preliminary Analysis. Council on Energy, Environment and Water, 26. Retrieved from http://www.indiaenvironmentportal.org.in/files/file/Decentralised%20Waste%20Management%20in%20Indian%20Railways.pdf (in English)

Kong, W. M. (2015). Implementation of Incineration for Efficient Waste Reduction. International Confe-rence on Advances in Environment Research, 87, 77-80. (in English)

Damgaard, A., Riber, C., Fruerqaard, T., Hulqaard, T., & Christensen, T. H. (2010). Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration. Waste Management, 30(7), 1244-1250. doi: 10.1016/j.wasman.2010.03.025 (in English)

Lombardi, L., Carnevale, E., & Corti, A. (2015). A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Management, 37, 26-44. doi: 10.1016/j.wasman.2014.11.010 (in English)

Tovazhnyanskyy, L. L., Ved, V. E., Koshchii, V. A., Rovenskii, A. I., & Krasnokutskii, E. V. (2013). Mobile thermocatalytic waste processing complex. Chemical Engineering Transaction, 35(2), 907-912. (in English)

Nguyen, T. H. A. (2012). Management of organic solid waste from rail operation by the Vietnam railways: the current situation and possible solutions. Journal of Vietnamese Environment, 3(1), 34-37. (in English)

Gomes, S., Neto, P. H. W., Silva, D. A., Antunes, S. R. M., & Rocha, C. H. (2017) Potencial energético de resíduos sólidos domiciliares do município de Ponta Grossa, Paraná, Brasil (Energy potential of household solid waste (HSW) in the city of Ponta Grossa, Paraná, Brazil). Engenharia Sanitaria e Ambiental, 22(6), 1197-1202. doi: 10.1590/S1413-41522017143432 (in Portugal)

Buffoli, M., Capolongo, S., Loconte, V. L., & Signorelli, C. (2012). Termovalorizzatori: analisi e confronto tra nuove tecnologie, impatti e strategie di mitigazione (Thermovalorization: new technologies, impacts and mitigation strategies). Annali di igiene: medicina preventiva e di comunità, 24(2), 167-178. Retrieved from https://www.researchgate.net/publication/228111250_Thermovalorization_new_technologies_impacts_and_mitigation_strategies (in Italian)


GOST Style Citations


  1. Безовська, М. С. Управління поводження з відходами вагонних пасажирських депо на Придніпровській залізниці / М. С. Безовська, В. М. Плахотник, А. Х. Драбкіна // Вісник Кременч. держ. ун-ту ім. Михайла Остроградського. – 2007. – Вип. 1 (42), ч. 1. – С. 115–118.
  2. Крот, O. П. Моделирование установок с вращающейся печью для термического обезвреживания отходов / О. П. Крот, А. И. Ровенский // Проблемы региональной энергетики. – 2018. – № 1 (36). – С. 44–57. doi: 10.5281/zenodo.1217255
  3. Твердые бытовые отходы (сбор, транспорт и обезвреживание) : справочник / В. Г. Систер, А. Н. Мирный, Л. С. Скворцов, Н. Ф. Абрамов, Х. Н. Никогосов. – Москва : АКХ им. К. Д. Панфилова, 2001. – 319 c.
  4. Characterization of Singapore RDF resources and analysis of their heating value / L. Zhao, A. Giannis, W.-Y. Lam, S.-X. Lin, K. Yin, G.-A. Yuan, J.-Y. Wang // Sustainable Environment Research. – 2016. – Vol. 26. – Іss. 1. – P. 51–54. doi: 10.1016/j.serj.2015.09.003
  5. Combustion characteristics of coal and refuse from passenger trains / Ren Fu-min, Yue Feng, Gao Ming, Yu Min // Waste Management. – 2010. – Vol. 30. – Iss. 7. – P. 1196–1205. doi: 10.1016/j.wasman.2009.12.023
  6. Decentralized Waste Management in Indian Railways: A Preliminary Analysis / M. Sharma, R. Kumar Sugam, K. Neog, A. Ramji. – New Delhi : Council on Energy, Environment and Water, 2016. – 26 p.
  7. Kong, W. M. Implementation of Incineration for Efficient Waste Reduction / W. M. Kong // 2015 International Conference on Advances in Environment Research. – 2015. – Vol. 87. – p. 77–80.
  8. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration / A. Damgaard, C. Riber, T. Fruergaard, T. Hulgaard, T. H. Christensen // Waste Management. – 2010. – Vol. 30. – Iss. 7. – P. 1244–1250. doi: 10.1016/j.wasman.2010.03.025
  9. Lombardi, L. A review of technologies and performances of thermal treatment systems for energy recovery from waste / L. Lombardi, E. Carnevale, A. Corti // Waste Management. – 2015. – Vol. 37. – P. 26–44. doi: 10.1016/j.wasman.2014.11.010
  10. Mobile thermocatalytic waste processing complex / L. L. Tovazhnyanskyy, V. E. Ved, V. A. Koshchii, A. I. Rovenskii, E. V. Krasnokutskii // Chemical Engineering Transaction. – 2013. – Vol. 35, pt. 2. – Р. 907–912.
  11. Nguyen, Th. H. A. Management of organic solid waste from rail operation by the Vietnam railways: the current situation and possible solutions / Thi Hoai An Nguyen // Journal of Vietnamese Environment. – 2012. – Vol. 3, No. 1. – P. 34–37.
  12. Potencial energético de resíduos sólidos domiciliares do município de Ponta Grossa, Paraná, Brasil (Energy potential of household solid waste (HSW) in the city of Ponta Grossa, Paraná, Brazil) / S. Gomes,
    P. H. W. Neto, D. Agostinho da Silva, S. R. Masetto Antunes, C. Hugo Rocha // Engenharia Sanitaria e Ambiental. – 2017. – Vol. 22. – Iss. 6. – P. 1197–1202. doi: 10.1590/S1413-41522017143432
  13. Termovalorizzatori: analisi e confronto tra nuove tecnologie, impatti e strategie di mitigazione (Thermovalorization: new technologies, impacts and mitigation strategies) / M. Buffoli, S. Capolongo, V. L. Loconte, C. Signorelli // Annali di igiene: medicina preventiva e di comunità. – 2012. – Vol. 24 (2). – P. 167–178.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)