INCREASING VOLUME HARDNESS OF STEEL GRINDING BALLS USING Q-n-P HEAT TREATMENT

V. I. Zurnadzhy, V. G. Efremenko, E. V. Dunaev, A. Lekatou, R. A. Kussa

Abstract


Purpose. This study investigates the possibility of improving the quality of grinding steel balls with a diameter of 100 mm by using Q-n-P heat treatment. Methodology. Steel grinding balls with a diameter of 100 mm, obtained by transverse screw rolling, were used as a material. The heat treatment consisted of balls quenching in a drum-type device according to various modes and subsequent tempering. The quenching modes provided the bulk temperature of the balls in the range of 120-240 оС, which is lower than the martensitic point Ms of the steel. After quenching, the balls were immediately tempered at 170-300 °C for 2-10 hours. The treated balls were visually examined, tested for hardness and impact resistance. The hardness was measured according to the Rockwell method by scale "C", the microhardness was measured with microhardness tester "Affri" at a load of 50 g. The impact resistance of the balls was evaluated by impact of a dropped load with impact energy of 6.8 kJ. Microstructural analysis was conducted using an optical microscope "Axiovert 40-M". The amount of residual austenite was determined using an "IV-Pro Rigaku" diffractometer in copper Ka-radiation. Findings. It is shown that, as a result of treatment of 100 mm diameter balls of chromium-manganese steel according the standard mode, the cracks occur on balls surface. Using Q-n-P heat treatment allows achieving higher hardness through the cross section (within 54-57 HRC) while quenching cracks are absent on the balls. The Q-n-P-treated balls have high impact resistance under repeated impacts with energy of 6.8 kJ. Originality. For the first time the authors investigated the feasibility of using the Q-n-P heat treatment for steel grinding balls of large diameter made of steel with increased hardenability. It has been determined that Q-n-P-processing allows to significantly increase (by 10 HRC) the bulk hardness of 100 mm diameter balls, while retaining their high impact resistance in tests with a dropped load. The obtaining of such properties is pro-vided by the relaxation of quenching stresses and the formation of a two-phase martensitic-austenite structure with an increased amount (25-30 %) of retained austenite. The latter becomes possible due to the process of partitioning carbon from martensite to austenite with enrichment of the latter to 1.12 % C. Practical value. The advisability of Q-n-P-heat treatment in the production of steel grinding balls with higher bulk hardness is shown.


Keywords


Q-n-P-treament; grinding balls; hardness; impact resistance; microstructure

References


Vakulenko, I. A., & Bolshakov, V. I. (2008). Morfologiya struktury i deformatsionnoe uprochnenie stali. Dnepropetrovsk: Makovetskiy Y. V. Publisher. (in Russian)

Vakulenko, I. A. (2003). Struktura i svoystva uglerodistoy stali pri znakoperemennom deformirovanii. Dnepropetrovsk: Gaudeamus. (in Russian)

Gulyaeva, T. P., Sedovolosaya, T. P., & Danilov, A. P. (1995) Kachestvo melyushchikh sharov iz legirovannykh marok stali. Izvestiya VUZov. Chernaya metallurgiya, 6, 75. (in Russian)

Prokhorenko, Y. M., Klepikov, V. F., Litvinenko, V. V., Khaymovich, P. A., Shulgin, N. A., & Morozov, A. I. (2015). Diagnostika protsessov iznosa materialov v sharovykh barabannykh melnitsakh. Eastern-European Journal of Enterprise Technologies, 1, 5(73), 14-20. (in Russian)

Zaets, V. N. (2015). Otsenka usloviy raboty pomolnykh sharov iz stali evtektoidnogo sostava pri ispolzova-nii v sharovykh melnitsakh. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetutu silskoho hospodarstva im. Petra Vasylenka, 158, 288-293. (in Russian)

Zenkin, I. V., Naumova, E. A., & Dragobetskiy, V. V. (2016). The investigation of the deformed state during the volume stamping of grinding bodies. Scientific journal «Transactions of Kremenchuk Mykhailo Ostrohradskyi National University», 1(96), 97-102. (in Russian)

Zelikovich, A. Y., & Tokmakov, A. M. (1994). Uluchshenie kachestva termicheski obrabotannykh melyushchikh sharov. Stal, 2, 64-65. (in Russian)

Tkachenko, F. K., Kuzmin, S. O., Efremenko, V. G., & Kazankov, V. H. (2009). Kinetika prevrashcheniya austenita v relsovykh stalyakh M74 i 75KhGSM pri nepreryvnom okhlazhdenii. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu im. akademika V. Lazariana, 29, 198-201. (in Russian)

Nayzabekov, A. B., Mukhametkaliev, B. S., Arbuz, A. S., & Lezhnev, S. N. (2016). Snizheniya raskhoda stalnykh melyushchikh sharov putem uluchsheniya tekhnologii ikh proizvodstva. Vesti vysshikh uchebnykh zavedeniy Chernozemya, 4(46), 78–86. (in Russian)

Efremenko, V. G., Rtishchev, A. B., Zinchenko, Y. A., Tkachenko, F. K., Ganoshenko, I. V., Trufanova, O. I., & Kuzmin, S. O. (2009). Effektivnost ispolzovaniya melyushchikh sharov povyshennogo kachestva v usloviyakh OAO «Tsentralnyy GOK». Metallurgical and Mining Industry, 1, 90-93. (in Russian)

Camurri, C., Carrasco, C., & Colàs, R. (2014). Improving the working life of steel grinding balls by optimizing their hardness and tenacity. Materials Science Forum, 783, 2260-2265. doi: 10.4028/www.scientific.net/MSF.783-786.2239 (in English)

Arlazarov, A., Bouaziz, O., Masse, J. P., & Kegel, F. (2015). Characterization and modeling of mechanical behavior of quenching and partitioning steels. Materials Science and Engineering, 620, 293-300. doi: 10.1016/j.msea.2014.10.034 (in English)

Zhang, J., Ding, H., Misra, R. D. K., & Wang, C. (2014). Enhanced stability of retained austenite and consequent work hardening rate through pre-quenching prior to quenching and partitioning in a Q–P microalloyed steel. Materials Science and Engineering, 611, 252-256. doi: 10.1016/j.msea.2014.05.074 (in English)

Jia, X., Zuo, X., Liu, Y., Chen, N., & Rong, Y. (2015). High Wear Resistance of White Cast Iron Treated by Novel Process: Principle and Mechanism. Metallurgical and Materials Transactions A, 46(12), 5514-5525. doi: 10.1007/s11661-015-3137-4 (in English)

Efremenko, V. G., Ganoshenko, I. V., Tkachenko, F. K., Zhurba, V. A., & Trufanova, O. I. (2008). Improving the hardness of Azovstal Metallurgical Combine steel balls for crushing mills. Steel in Translation, 38(2), 176-178. doi: 10.3103/S0967091208020186 (in English)

Efremenko, V. G., Popov, E. S., Kuz’min, S. O., Trufanova, O. I., & Efremenko, A. V. (2014). Introduction of Three-Stage Thermal Hardening Technology for Large Diameter Grinding Balls. Metallurgist, 57(9-10), 849-854. doi: 10.1007/s11015-014-9812-7 (in English)

Liu, S. G., Dong, S. S., Yang, F., Li, L., Hu, B., Xiao, F. H., … Liu, H. S. (2014). Application of quenching–partitioning–tempering process and modification to a newly designed ultrahigh carbon steel. Materials & Design, 56, 37-43. doi: 10.1016/j.matdes.2013.10.094 (in English)

Sun, J., & Yu, H. (2013). Microstructure development and mechanical properties of quenching and partitioning (Q and P) steel and an incorporation of hot-dipping galvanization during Q and P process. Materials Science and Engineering, 586, 100-107. doi: 10.1016/j.msea.2013.08.021 (in English)


GOST Style Citations


  1. Вакуленко, И. А. Морфология структуры и деформационное упрочнение стали / И. А. Вакуленко, В. И. Большаков. – Днепропетровскск : Маковецкий, 2008. – 196 с.
  2. Вакуленко, И. А. Структура и свойства углеродистой стали при знакопеременном деформировании / И. А. Вакуленко. – Днепропетровск : Gaudeamus, 2003. – 94 с.
  3. Гуляева, Т. П. Качество мелющих шаров из легированных марок стали / Т. П. Гуляева, Т. П. Седоволосая, А. П. Данилов // Изв. вузов. Черная металлургия. – 1995. – № 6. – С. 75.
  4. Диагностика процессов износа материалов в шаровых барабанных мельницах / Е. М. Прохоренко, В. Ф. Клепиков, В. В. Литвиненко, П. А. Хаймович, Н. А. Шульгин, А. И. Морозов // Вост.-Европ. журнал передовых технологий. – 2015. – № 1/5(73). – С. 14–20.
  5. Заец, В. Н. Оценка условий работы помольных шаров из стали эвтектоидного состава при использовании в шаровых мельницах / В. Н. Заец // Вісн. Харк. нац. техн. ун-ту сільського госп-ва ім. Петра Василенка. – Харків, 2015. – Вип. 158. – С. 288–293.
  6. Зеликович, А. Я. Улучшение качества термически обработанных мелющих шаров / А. Я. Зеликович, А. М. Токмаков // Сталь. – 1994. – № 2. – С.64–65.
  7. Зенкин, И. В. Исследование деформированного состояния при объемной штамповке мелющих тел / И. В. Зенкин, Е. А. Наумова, В. В. Драгобецкий // Вісн. Кременчуц. нац. ун-ту ім. М. Остроградського. – 2016. – Вип. 1 (96). – С. 97–102.
  8. Кинетика превращения аустенита в рельсовых сталях М74 и 75ХГСМ при непрерывном охлаждении / Ф. К. Ткаченко, С. О. Кузьмин, В. Г. Ефременко, В. Г. Казанков // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2009. – Вип. 29. – С. 198–201.
  9. Снижения расхода стальных мелющих шаров путем улучшения технологии их производства / А. Б. Найзабеков, Б. С. Мухаметкалиев, А. С. Арбуз, С. Н. Лежнев // Вести высш. учеб. завед. Черноземья. – 2016. – № 4 (46). – С. 78–86.
  10. Эффективность использования мелющих шаров повышенного качества в условиях ОАО «Центральный ГОК» / В. Г. Ефременко, А. Б. Ртищев, Ю. А. Зинченко, Ф. К. Ткаченко, И. В. Ганошенко, О. И. Труфанова, С. О. Кузьмин // Металлургическая и горнорудная промышленность. – 2009. – № 1. – С. 90–93.
  11. Camurri, C. Improving the working life of steel grinding balls by optimizing their hardness and tenacity / C. Camurri, C. Carrasco, R. Colàs // Materials Science Forum. – 2014. – Vol. 783–786. – P. 2260–2265. doi: 10.4028/www.scientific.net/MSF.783-786.2239
  12. Characterization and modeling of mechanical behavior of quenching and partitioning steels / A. Arlazarov, O. Bouaziz, J. P. Masse, F. Kegel // Materials Science and Engineering: A. – 2015. – Vol. 620. – P. 293–300. doi: 10.1016/j.msea.2014.10.034
  13. Enhanced stability of retained austenite and consequent work hardening rate through pre-quenching prior to quenching and partitioning in a Q–P microalloyed steel / Jun Zhang, Hua Ding, R. D. K. Misra, C. Wang // Materials Science and Engineering: A. – 2014. – Vol. 611. – P. 252–256. doi: 10.1016/j.msea.2014.05.074
  14. High Wear Resistance of White Cast Iron Treated by Novel Process: Principle and Mechanism / X. Jia, X. Zuo, Y. Liu, N. Chen, Y. Rong // Metallurgical and Materials Transactions A. – 2015. – Vol. 46. – Іss. 12. – P. 5514–5525. doi: 10.1007/s11661-015-3137-4
  15. Improving the hardness of OAO Azovstal Metallurgical Combine steel balls for crushing mills / V. G. Efremenko, I. V. Ganoshenko, F. K. Tkachenko, V. A. Zhurba, O. I. Trufanova // Steel in Translation. – 2008. – Vol. 38. – Іss. 2. – P. 176–178. doi: 10.3103/S0967091208020186
  16. Introduction of Three-Stage Thermal Hardening Technology for Large Diameter Grinding Balls / V. G. Efremenko, E. S. Popov, S. O. Kuz’min, O. I. Trufanova, A. V. Efremenko // Metallurgist. – 2014. – Vol. 57. – Іss. 9–10. – P. 849–854. doi: 10.1007/s11015-014-9812-7
  17. Liu, S. G. Application of quenching–partitioning–tempering process and modification to a newly designed ultrahigh steel / S. G. Liu, S. S. Dong, F. Yang // Materials & Design (1980–2015). – 2014. – Vol. 56. – P. 37–43. doi: 10.1016/j.matdes.2013.10.094
  18. Sun, J. Microstructure development and mechanical properties of quenching and partitioning (Q&P) steel and an incorporation of hot-dipping galvanization during Q&P process / Sun Jing, Yu Hao // Materials Science and Engineering: A. – 2013. – Vol. 586. – P. 100–107. doi: 10.1016/j.msea.2013.08.021


DOI: https://doi.org/10.15802/stp2018/129535

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)