DOI: https://doi.org/10.15802/stp2018/130854

SPECIAL LABORATORY TESTING METHOD FOR EVALUATION PARTICLE BREAKAGE OF RAILWAY BALLAST MATERIAL

S. Fischer, A. Németh

Abstract


Purpose. There are special, standardized laboratory test methods to evaluate railway ballast particle breakage; they are the Los Angeles and the Micro-Deval abrasion test. The authors opine that these methods aren’t the most adequate methods to assess the real ballast particle degradation because in reality never occurs these kinds of stresses and strains (i.e. particles in a rotating drum with or without steel balls and with or without water). A new laboratory test procedure is needed. The authors attempted to configure an adequate one in 2014, it is detailed in the paper, as well as the initial results and improvement possibility. This test method is related to dynamic pulsating test, the particle size distributions (PSD) had to be determined before and after fatigue. In 2017-2018 the research is supported by ÚNKP-17-4 program. Methodology. Multi-level steel box is utilized with a special layer structure, detailed in the paper. Five different types of railway ballast samples were tested. PSDs were defined, and regarding to the results relationship between ballast particle degradation values (according to Los Angeles and Micro-Deval abrasion tests, as well as this newly developed laboratory test method) was searched, as well as time interval between necessity railway ballast cleaning work was also calculated. Findings. The authors sentenced the results regarding to the self-developed laboratory test method that is able to assess the particle degradation and time interval between railway ballast cleaning work more precisely related to the real railway operation circumstances. Relationship was determined between particle breakage according to standardized and unique (non-standardized) laboratory test methods. Originality. The paper summarized the results a newly developed laboratory test method for evaluation of the degradation of railway ballast particles. Practical value. It sentenced the possibility to improve the measurements and assessments regarding to the research phase supported by the ÚNKP-17-4 project.


Keywords


railway ballast; particle degradation; particle breakage; special laboratory test method; dynamic fatigue test

Full Text:

PDF

References


Al-Saoudi, Namir K. S., & Hassan, Khawla H. (2013). Behaviour of Track Ballast Under Repeated Loading. Geotechnical and Geological Engineering, 32(1), 167-178. doi: 10.1007/s10706-013-9701-z. (in English)

Ambrus, K., & Pallós, І. (2012). Útépítési zúzottkövek és zúzottkavicsok aszfaltkeverékek gyártásához, felületi bevonatok készítéséhez. Retrieved from http://docplayer.hu/9502775-Utepitesi-zuzottkovek-es-zuzottkavicsok-aszfaltkeverekek-gyartasahoz-feluleti-bevonatok-keszitesehez.html (in Hungarian)

Anbazhagan, P., Bharatha, T. P., & Amarajeevi, G. (2012). Study of ballast fouling in railway track formations. Indian Geotechnical Journal, 42(2), 87-99. doi: 10.1007/s40098-012-0006-6 (in English)

Brancadoro, M. G., Bianchini Ciampoli, L., Ferrante, C., Benedetto, A., Tosti, F., & Alani, A. M. (2017). An Investigation into the railway ballast grading using GPR and image analysis. 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR): Conference Paper (Edinburgh, June 28-30). doi: 10.1109/IWAGPR.2017.7996043 (in English)

Arangie, P. B. D. (1997). The influence of ballast fouling on the resilient behaviour of the ballast pavement layer. Proc. of 6th Intern. Heavy Haul Railway Conference (Cape Town, April 6-10), 241-256. (in English)

Bajpai, P., & Das, A. (2017). Theoretical assessment of railway ballast degradation under cyclic loading. Bearing Capacity of Roads, Railways and Airfields: Proc. of the 10th Intern. Conference (June 28-30, Athens, Greece). doi: 10.1201/9781315100333-267 (in English)

Bearing Capacity of Roads, Railways and Airfields: Proc. of the 10th Intern. Conference (June 28-30, Athens, Greece). (2017). London. (in English)

Bian, X., D., Sun, D., & Li, W. (2017). Experimental study on cyclic deformation and particle breakage of railway ballast. Bearing Capacity of Roads, Railways and Airfields: Proc. of the 10th Intern. Conference (June 28-30, Athens, Greece), 1801-1809. (in English)

Claisse, P., & Calla, C. (2006). Rail ballast: conclusions from a historical perspective. Proceedings of the Institution of Civil Engineers-Transport, 159(2), 69-74. doi: 10.1680/tran.2006.159.2.69 (in English)

Christie, D., Nimbalkar, S., & Indraratna, B. (2009). The performance of rail track incorporating the effects of ballast breakage, confining pressure and geosynthetic reinforcement. Bearing Capacity of Roads, Railways and Airfields: Proc of the 8th Intern. Conference (June 29-July 2, Unversity of Illinois at Urbana, Champaign, Illinois, USA), 5-24. (in English)

Xiao, J., Zhang, D., Wang, Y., & Luo, Z. (2017). Cumulative deformation characteristic and shakedown limit of railway ballast under cyclic loading. Bearing Capacity of Roads, Railways and Airfields: Proc. of the 10th Intern. Conference (June 28-30, Athens, Greece), 1899-1904. (in English)

Indraratna, B., Sun, Q., Ngo, N. T., & Rujikiatkamjorn, C. (2017). Current research into ballasted rail tracks: model tests and their practical implications. Australian Journal of Structural Engineering, 18(3), 204-220. doi: 10.1080/13287982.2017.1359398 (in English)

D’Angelo, G., Presti, D. Lo, & Thom, N. (2017). Optimisation of bitumen emulsion properties for ballast stabilization. Materiales de Construcción, 67(327), 124. doi: 10.3989/mc.2017.04416 (in English)

TL DBS 918 061: Technische Lieferbedingungen Gleisschotter (2006). Berlin, 2006/08. (in German)

Hossain, Z., Indraratna, B., Darve, F., & Thakur, P. K. (2007). DEM analysis of angular ballast breakage under cyclic loading. Geomechanics and Geoengineering, 2(3), 175-181. doi: 10.1080/17486020701474962 (in English)

Diógenes, D. F., Maia, R., & Castelo, V. (2017). Evaluation of the ballast aggregates shape properties using digital image processing techniques. Bearing Capacity of Roads, Railways and Airfields: Proc. of the 10th Intern. Conference (June 28-30, Athens, Greece), 2003-2008. (in English)

Douglas, S. C. (2013). Ballast Quality and Breakdown during Transport. 2013 Joint Rail Conference: Conference Paper (Knoxville, Tennessee, USA, April 15-18). doi: 10.1115/JRC2013-2553 (in English)

Esmaeili, M., Aela, P., & Hosseini, A. (2017). Experimental assessment of cyclic behavior of sand-fouled ballast mixed with tire derived aggregates. Soil Dynamics and Earthquake Engineering, 98, 1-11. doi: 10.1016/j.soildyn.2017.03.033. (in English)

Fischer, S. (2012). A vasúti zúzottkő ágyazat alá beépített georácsok vágánygeometriát stabilizáló hatásának vizsgálata: PhD thesis. Győr. (in Hungarian)

Fischer, S. (2015). A vasúti zúzottkövek aprózódásvizsgálata egyedi laboratóriumi módszerrel. Sínek Világa, 57(3), 12-19. (in Hungarian)

Fischer, S. (2017). Breakage Test of Railway Ballast Materials with New Laboratory Method. Periodica Polytechnica Civil Engineering, 61(4), 794-802. doi: 10.3311/PPci.8549 (in English)

Gaitskell, P., & Shahin, M. A. (2013). Use of digital imaging for gradation and breakage of railway ballast. Australian Geomechanics, 48, 81-88. (in English)

Gálos, M., Kárpáti, L., & Szekeres, D. (2011). Ágyazati kőanyagok: A kutatás eredményei. 2 rész. Sínek Világa, 55(1), 6-13. (in Hungarian)

Guo, Y. L., & Jing, G. Q. (2017). Ballast degradation analysis by Los Angeles Abrasion test and image analysis method. Bearing Capacity of Roads, Railways and Airfields: Proceedings of the 10th International Conference (June 28–30, 2017, Athens, Greece), 1811-1815. (in English)

Indraratna, B., Salim, W., & Rujikiatkamjorn, C. (2011). Advanced rail geotechnology – Ballasted track. London: CRC Press. (in English)

Indraratna, B., Sun, Y., & Nimbalkar, S. (2016). Laboratory assessment of the role of particle size distribution on the deformation and degradation of ballast under cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 142(7), 0401601601-0401601612. doi: 10.1061/(ASCE)GT.1943-5606.0001463 (in English)

Kausay, T. (2011). Adalékanyagok kőzetfizikai tulajdonságai. Út- és hídépítési műszaki előírások és alkalmazási tapasztalataik. Budapest. Retrived from http://www.betonopus.hu/szakmernoki/kozut-2-adalekanyag-kozetfizika.pdf. (in Hungarian)

Kausay, T. (2008). Zúzott betonadalékanyagok kőzetfizikai tulajdonságai a szabályozásban. Mérnökgeológia Kőzetmechanika, 259-270. (in Hungarian)

Kolos, A., Konon, A., & Chistyakov, P. (2017). Change of ballast strength properties during particle abrasive wear. Procedia Engineering, 189, 908-915. (in English)

Kondratov, V., Solovyova, V., & Stepanova, I. (2017). The development of a high performance material for a ballast layer of a railway track. Procedia Engineering, 189, 823-828. (in English)

Kurhan, M. B., & Kurhan, D. M. (2017). Railway track representation in mathematical model of vehicles movement. Science and Transport Progress, 6(72), 40-48. doi: 10.15802/stp2017/118380 (in English)

Lichtberger, B. (2005). Track compendium: Formation, Permanent Way, Maintenance, Economics. Hamburg: Eurailpress Tetzlaff-Hestra GmbH & Co. (in English)

McDowell, G., & Stickley, P. (2006). Performance of geogrid-reinforced ballast. Ground Engineering, January, 4-6. (in English)

Major, Z. (2013). Special problems of interaction between railway track and bridge. Pollack Periodica, 8(2), 97-106. doi: 10.1556/Pollack.8.2013.2.11 (in English)

A 102345/1995 PHMSZ előírás 3. számú módosítása (Modification3 inMÁV 102345/1995 PHMSZ. ’Railway substructure and ballast quality acceptance regulations instruction’), 5 MÁV (2008). (in Hungarian)

A 102345/1995 PHMSZ előírás 4. számú módosítása. (Modification4 inMÁV 102345/1995 PHMSZ. ’Railway substructure and ballast quality acceptance regulations instruction’), 14 MÁV (2010). (in Hungarian)

Guixian Liu, Guoqing Jing, Dong Ding, & Xiaoyi Shi. (2017). Micro-analysis of Ballast Angularity Breakage and Evolution by Monotonic Triaxial Tests. Environmental Vibrations and Transportation Geodyna-mics, 133-144. doi: 10.1007/978-981-10-4508-0_12 (in English)

Ghataora, G. S., Burrow, M. P. N., Kamalov, R. S., Wehbi, М., & Musgrave, Р. (2017). Migration of fine particles from subgrade soil to the overlying ballast. Railway Engineering – 2017: Conference Paper (Edinburgh, 2017, June 21–22). (in English)

Kőanyaghalmazok mechanikai és fizikai tulajdonságainak vizsgálata. 1. rész: A kopásállóság vizsgálata (mikro-Deval). (Tests for mechanical and physical properties of aggregates. Determination of the resistance to wear (micro-Deval), 35 MSZ EN 1097-1:2012 (2012). (in Hungarian)

Kőanyaghalmazok mechanikai és fizikai tulajdonságainak vizsgálata. 2. rész: Az aprózódással szembeni ellenállás meghatározása. (Tests for mechanical and physical properties of aggregates. Methods for the determination of resistance to fragmentation), 35 MSZ EN 1097-2:2010 (2010). (in Hungarian)

Kőanyaghalmazok geometriai tulajdonságainak vizsgálata. 3. rész: A szemalak meghatározása. Lemezességi szám. 12 MSZ EN 933-3 (2012). (in Hungarian)

Kőanyaghalmazok termikus tulajdonságainak és időjárás-állóságának vizsgálati módszerei. 2. rész: Magnézium-szulfátos eljárás.16 MSZ EN 1367-2 (2010). (in Hungarian)

Kőanyaghalmazok vasúti ágyazathoz. (Aggregates for railway ballast). 33 MSZ EN 13450:2003 (2003). (in Hungarian)

Nagy, R. (2017). Description of rail track geometry deterioration process in Hungarian rail lines No. 1 and No. 140. Pollack Periodica, 12(3), 141-156. doi: 10.1556/606.2017.12.3.13 (in English)

Nålsund, R. (2017). Prediction of railway ballast service life. Bearing Capacity of Roads, Railways and Airfields : Proc. of the 10th Intern. Conf. (June 28–30, 2017, Athens, Greece), 2055-2061. doi: 10.1201/9781315100333-291 (in English)

Nimbalkar, S., & Indraratna, B. (2016). Field assessment of ballasted railroads using geosynthetics and shock mats. Рrocedia Engineering, 143, 1485-1494. doi: 10.1016/j.proeng.2016.06.175. (in English)

Pavia, C. E. L., Pereira, M. L., & Pimentel, L. L. (2017). Study Of Railway Ballast Fouling By Abrasion-Originated Particles. Railway Engineering: Proc. of the 14th Intern. Conf. (Edinburgh, Scotland, UK, 21st–22nd June 2017). (in English)

Indraratna, B., Nimbalkar, S., Rujikiatkamjorn, C., Neville, T., & Christie, D. (2013). Performance Assessment of Synthetic Shock Mats and Grids in the Improvement of Ballasted Tracks. Proc. of the 18th Intern. Conf. on Soil Mechanics and Geotechnical Engineering, 1283-1286. (in English)

Fisher, S., Eller, B., Kada, Z., & Németh, A. (2015). Railway Construction. Győr: Universitas-Győr Nonprofit Kft. (in Hungarian)

Xiao, L. Fu, J., Zhou, S., Zhang, D., Wang, Y., Liu, W., & Jiang, L. (2017). Roadbed improvement of an existing railway line located in cold region by reusing crushed deteriorated ballast. Bearing Capacity of Roads, Railways and Airfields : Proc. of the 10th Intern. Conf. (June 28–30, 2017, Athens, Greece), 1845-1850. (in English)

Sadeghi, J. M., Zakeri, J. Ali, & Najar, M. E. M. (2016). Developing Track Ballast Characteristic Guideline In Order To Evaluate Its Performanc. International Journal of Railway, 9 (2), 27-35. doi: 10.7782/IJR.2016.9.2.027 (in English)

Selig, E. T., & Waters, J. M. (1994). Track Geotechnology and Substructure Management Ernest. London: Thomas Telford. (in English)

Junhua Xiao, De Zhang, Kai Wei, & Zhe Luo (2017). Shakedown behaviors of railway ballast under cyclic loading. Construction and Building Materials, 155, 1206-1214. doi: 10.1016/j.conbuildmat.2017.07.225 (in English)

Shi, X. (2009). Prediction of permanent Deformation in Railway Track (PhD thesis). University of No-ttingham, Nottingham. (in English)

Fortunato, E., Paixão, A., Fontul, S., Pires, J. (2017). Some results on the properties and behavior of railway ballast. Bearing Capacity of Roads, Railways and Airfields : Proc. of the 10th Intern. Conf. (June 28–30, 2017, Athens, Greece), 1877-1884. (in English)

Sun, Y., Chen, C., & Nimbalkar, S. (2017). Identification of ballast grading for rail track. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 945-954. doi: 10.1016/j.jrmge.2017.04.006 (in English)

Szalóki, F. (2017). Múlt, jelen, jövő az EU-s támogatások tükrében. XVIII Közlekedésfejlesztési és Beruházási Konferencia (Bükfürdő, 2017, April 26–28). Retrived from http://ktenet.hu/download.php?edid=1484. (in Hungarian)

Track ballast in Austria: Parts 1, 2, 3, 1-11. Retrived from https://www.plassertheurer.com/fileadmin/user_upload/Mediathek/Publikationen/ri_12888990.pdf (in English)

Weinreich, Z. (2011). Nagysebességű vasutak pályafenntartási kitűzése. Sínek Világa, 53(6), 27-31. (in Hungarian)

Wichtmann, T., & Triantafyllidis, T. (2013). Effect of uniformity coefficient on G/Gmax and damping ratio of uniform to well graded quartz sands. Journal of Geotechnical and Geoenvironmental Engineering, 139(1), 59-72. (in English)


GOST Style Citations


  1. Al-Saoudi, N. K. S. Behaviour of Track Ballast Under Repeated Loading / Namir K. S. Al-Saoudi, Khawla H. Hassan // Geotechnical and Geological Engineering. – 2013. – Vol. 32. – Іss. 1. – Р. 167–178. doi: 10.1007/s10706-013-9701-z
  2. Ambrus, K. Útépítési zúzottkövek és zúzottkavicsok aszfaltkeverékek gyártásához, felületi bevonatok készítéséhez [Electronic resource] / К. Ambrus, І. Pallós. – 2012. – Available at: http://docplayer.hu/9502775-Utepitesi-zuzottkovek-es-zuzottkavicsok-aszfaltkeverekek-gyartasahoz-feluleti-bevonatok-keszitesehez.html – Title from the screen. – Accessed : 23.04.2018.
  3. Anbazhagan, P. Study of ballast fouling in railway track formations / P. Anbazhagan, T. P. Bharatha, G. Amarajeevi // Indian Geotechnical Journal. – 2012. – Vol. 42. – Iss. 2. – P. 87–99. doi: 10.1007/s40098-012-0006-6
  4. An Investigation into the railway ballast grading using GPR and image analysis / M. G. Brancadoro, L. Bianchini Ciampoli, C. Ferrante, A. Benedetto, F. Tosti, A. M. Alani // 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR) : Conference Paper (Edinburgh, 2017, June 28–30). – Edinburgh, Scotland, 2017. doi: 10.1109/IWAGPR.2017.7996043
  5. Arangie, P. B. D. The influence of ballast fouling on the resilient behaviour of the ballast pavement layer // Proc. of 6th Intern. Heavy Haul Railway Conf. (Cape Town, 1997, April 6–10). – Cape Town, 1997. – Р. 241–256.
  6. Bajpai, P. Theoretical assessment of railway ballast degradation under cyclic loading / P. Bajpai, A. Das // Bearing Capacity of Roads, Railways and Airfields : Proc. of the 10th Intern. Conf. (June 28–30, 2017, Athens, Greece). – London, 2017. doi: 10.1201/9781315100333-267
  7. Bearing Capacity of Roads, Railways and Airfields : Proc. of the 10th Intern. Conf. (June 28–30, 2017, Athens, Greece). – London, 2017. – 394 р.
  8. Bian, X. Experimental study on cyclic deformation and particle breakage of railway ballast / Х. Bian, D. Sun, W. Li // Bearing Capacity of Roads, Railways and Airfields : Proc. of the 10th Intern. Conf. (June 28–30, 2017, Athens, Greece). – London, 2017. – Р. 1801–1809.
  9. Claisse, P. Rail ballast: conclusions from a historical perspective / P. Claisse, C. Calla // Proceedings of the Institution of Civil Engineers – Transport. – 2006. – Vol. 159. – Іss. 2. – P. 69–74. doi: 10.1680/tran.2006.159.2.69
  10. Christie, D. The performance of rail track incorporating the effects of ballast breakage, confining pressure and geosynthetic reinforcement / D. Christie, S. Nimbalkar, B. Indraratna // Bearing Capacity of Roads, Railways and Airfields : Proc of the 8th Intern. Conf. (June 29–July 2, 2009, Unversity of Illinois at Urbana, Champaign, Illinois, USA). – London, 2009. – P. 5–24.
  11. Cumulative deformation characteristic and shakedown limit of railway ballast under cyclic loading / J. Xiao, D. Zhang, Y. Wang, Z. Luo // Bearing Capacity of Roads, Railways and Airfields : Proc. of the 10th Intern. Conf. (June 28–30, 2017, Athens, Greece). – London, 2017. – P. 1899–1904.
  12. Current research into ballasted rail tracks: model tests and their practical implications / B. Indraratna, Q. Sun, N. T. Ngo, C. Rujikiatkamjorn // Australian Journal of Structural Engineering. – 2017. – Vol. 18. – Іss. 3. – Р. 204–220. doi: 10.1080/13287982.2017.1359398
  13. D’Angelo, G. Optimisation of bitumen emulsion properties for ballast stabilisation / G. D’Angelo, D. Lo Presti, N. Thom // Materiales de Construcción. – 2017. – Vol. 67. – Іss. 327. – P. 124. doi: 10.3989/mc.2017.04416
  14. DB. «TL DBS 918 061: Technische Lieferbedingungen Gleisschotter» (TL DBS 918 061: Technical delivery conditions Railway ballast). – Berlin, 2006/08.
  15. DEM analysis of angular ballast breakage under cyclic loading / Z. Hossain, B. Indraratna, F. Darve, P. K. Thakur // Geomechanics and Geoengineering. – 2007. – Vol. 2. – Iss. 3. – P. 175–181. doi: 10.1080/17486020701474962
  16. Diógenes, D. F. Evaluation of the ballast aggregates shape properties using digital image processing techniques / D. Diógenes, R. Maia, V. Castelo // Bearing Capacity of Roads, Railways and Airfields : Proc. of the 10th Intern. Conf. (June 28–30, 2017, Athens, Greece). – London, 2017. – P. 2003–2008.
  17. Douglas, S. C. Ballast Quality and Breakdown during Tamping / S. Caleb Douglas // 2013 Joint Rail Conference : Conf. Paper (Knoxville, Tennessee, USA, April 15–18, 2013). – 2013. doi: 10.1115/JRC2013-2553
  18. Esmaeili, M. Experimental assessment of cyclic behavior of sand-fouled ballast mixed with tire derived aggregates // M. Esmaeili, P. Aela, A. Hosseini // Soil Dynamics and Earthquake Engineering. – 2017. – Vol. 98. – P. 1–11. doi: 10.1016/j.soildyn.2017.03.033
  19. Fischer, Sz. A vasúti zúzottkő ágyazat alá beépített georácsok vágánygeometriát stabilizáló hatásának vizsgálata : PhD thesis / Sz. Fischer ; Széchenyi István Egyetem. – Győr, 2012. – 148 р. 
  20. Fischer, Sz. A vasúti zúzottkövek aprózódásvizsgálata egyedi laboratóriumi módszerrel / Sz. Fischer // Sínek Világa. – 2015. – Vol. 57. – No 3. – P. 12–19.
  21. Fischer, Sz. Breakage Test of Railway Ballast Materials with New Laboratory Method / Szabolcs Fischer // Periodica Polytechnica Civil Engineering. – 2017. – Vol. 61. – No 4. – P. 794–802. doi: 10.3311/PPci.8549
  22. Gaitskell, P. Use of digital imaging for gradation and breakage of railway ballast / Peter Gaitskell1, Mohamed A. Shahin // Australian Geomechanics. – 2013. – Vol. 48. – P. 81–88.
  23. Gálos, M. Ágyazati kőanyagok: A kutatás eredményei. 2 rész. / М. Gálos, L. Kárpáti, D. Szekeres // Sínek Világa. – 2011. – Vol. 55. – No 1. – P. 6–13.
  24. Guo, Y. L. Ballast degradation analysis by Los Angeles Abrasion test and image analysis method / Y. L. Guo, G. Q. Jing // Bearing Capacity of Roads, Railways and Airfields : Proc. of the 10th Intern. Conf. (June 28–30, 2017, Athens, Greece). – London, 2017. – Р. 1811–1815.
  25. Indraratna, B. Advanced rail geotechnology – Ballasted track / Buddhima Indraratna, Wadud Salim, Cholachat Rujikiatkamjorn. – London : CRC Press, 2011. – 432 р.
  26. Indraratna, B. Laboratory assessment of the role of particle size distribution on the deformation and degradation of ballast under cyclic loading / Buddhima Indraratna, Yifei Sun, Sanjay Nimbalkar // Journal of Geotechnical and Geoenvironmental Engineering. – 2016. – Vol. 142. – Іss. 7. – Р. 0401601601–0401601612. doi: 10.1061/(ASCE)GT.1943-5606.0001463
  27. Kausay, T. Adalékanyagok kőzetfizikai tulajdonságai. Út- és hídépítési műszaki előírások és alkalmazási tapasztalataik [Electronic resource] / Т. Kausay. – Budapest, 2011. – Available at: http://www.betonopus.hu/szakmernoki/kozut-2-adalekanyag-kozetfizika.pdf – Title from the screen. – Accessed : 03.05.2018.
  28. Kausay, T. Zúzott betonadalékanyagok kőzetfizikai tulajdonságai a szabályozásban / Т. Kausay // Mérnökgeológia Kőzetmechanika 2008. – Budapest, 2008. – Р. 259–270.
  29. Kolos, A. Change of ballast strength properties during particle abrasive wear / Alexey Kolos, Anastasia Konon, Pavel Chistyakov // Procedia Engineering. – 2017. – Vol. 189. – P. 908–915.
  30. Kondratov, V. The development of a high performance material for a ballast layer of a railway track / Valery Kondratov, Valentina Solovyova, Irina Stepanova // Procedia Engineering. – 2017. – Vol. 189. – P. 823–828.
  31. Kurhan, M. B. Railway Track Representation in Mathematical Model of Vehicles Movement / M. B. Kurhan, D. M. Kurhan // Наука та прогрес транспорту. – 2017. – № 6 (67). – С. 40–48. doi: 10.15802/stp2017/118380
  32. Lichtberger, B. Track compendium: Formation, Permanent Way, Maintenance, Economics / В. Lichtberger. – Hamburg : Eurailpress Tetzlaff-Hestra GmbH & Co, 2005. – 634 р.
  33. McDowell, G. Performance of geogrid-reinforced ballast / Glenn McDowell, Peter Stickley // Ground Engineering. – 2006. – January. – Р. 4–6.
  34. Major, Z. Special problems of interaction between railway track and bridge / Z. Major // Pollack Periodica. – 2013. – Vol. 8. – Іss. 2. – P. 97–106. doi: 10.1556/Pollack.8.2013.2.11
  35. MÁV. «A 102345/1995 PHMSZ előírás 3. számúmódosítása» (Modification 3 in MÁV 102345/1995 PHMSZ. ’Railway substructure and ballast quality acceptance regulations instruction’). – Budapest, 2008. – 5 р.
  36. MÁV. «A 102345/1995 PHMSZ előírás 4. számú módosítása». (Modification 4 in MÁV 102345/1995 PHMSZ. ’Railway substructure and ballast quality acceptance regulations instruction’). – Budapest, 2010. – 14 р.
  37. Micro-analysis of Ballast Angularity Breakage and Evolution by Monotonic Triaxial Tests / Guixian Liu, Guoqing Jing, Dong Ding, Xiaoyi Shi // Environmental Vibrations and Transportation Geodynamics. – Singapore, 2017. – P. 133–144. doi: 10.1007/978-981-10-4508-0_12
  38. Migration of fine particles from subgrade soil to the overlying ballast / G. S. Ghataora, M. P. N. Burrow, R. S. Kamalov, М. Wehbi, Р. Musgrave // Railway Engineering – 2017 : Conf. Paper (Edinburgh, 2017, June 21–22). – Edinburgh, 2017.
  39. MSZ EN 1097-1:2012. «Kőanyaghalmazok mechanikai és fizikai tulajdonságainak vizsgálata. 1. rész: A kopásállóság vizsgálata (mikro-Deval)». (Tests for mechanical and physical properties of aggregates. Determination of the resistance to wear (micro-Deval). – Budapest, 2012. – 35 р.
  40. MSZ EN 1097-2:2010. «Kőanyaghalmazok mechanikai és fizikai tulajdonságainak vizsgálata. 2. rész: Az aprózódással szembeni ellenállás meghatározása». (Tests for mechanical and physical properties of aggregates. Methods for the determination of resistance to fragmentation). – Budapest, 2010. – 35 р.
  41. MSZ EN 933-3: Kőanyaghalmazok geometriai tulajdonságainak vizsgálata. 3. rész: A szemalak meghatározása. Lemezességi szám. – Budapest, 2012. – 12 р.
  42. MSZ EN 1367-2: Kőanyaghalmazok termikus tulajdonságainak és időjárás-állóságának vizsgálati módszerei. 2. rész: Magnézium-szulfátos eljárás. – Budapest, 2010. – 16 р.
  43. MSZ EN 13450:2003. «Kőanyaghalmazok vasúti ágyazathoz». (Aggregates for railway ballast). – Budapest, 2003. – 33 р.
  44. Nagy, R. Description of rail track geometry deterioration process in Hungarian rail lines No. 1 and No. 140 / R. Nagy // Pollack Periodica. – 2017. – Vol. 12. – Іss. 3. – P. 141–156. doi: 10.1556/606.2017.12.3.13
  45. Nålsund, R. Prediction of railway ballast service life / R. Nålsund // Bearing Capacity of Roads, Railways and Airfields : Proc. of the 10th Intern. Conf. (June 28–30, 2017, Athens, Greece). – London, 2017. – P. 2055–2061. doi: 10.1201/9781315100333-291
  46. Nimbalkar, S. Field assessment of ballasted railroads using geosynthetics and shock mats / S. Nimbalkar, В. Indraratna // Рrocedia Engineering. – 2016. – Vol. 143. – P. 1485–1494. doi: 10.1016/j.proeng.2016.06.175
  47. Pavia, C. E. L. Study Of Railway Ballast Fouling By Abrasion-Originated Particles / Cassio E. L. de Paiva, Mauro L. Pereira, Lia L. Pimentel // Railway Engineering – 2017 : Proc. of the 14th Intern. Conf. (Edinburgh, Scotland, UK, 21st–22nd June 2017). – Edinburgh, 2017.
  48. Performance Assessment of Synthetic Shock Mats and Grids in the Improvement of Ballasted Tracks / В. Indraratna, S. Nimbalkar, С. Rujikiatkamjorn, Т. Neville, D. Christie // Proc. of the 18th Intern. Conf. on Soil Mechanics and Geotechnical Engineering. – Paris, 2013. – Р. 1283–1286.
  49. Railway Construction / Sz. Fisher, B. Eller, Z. Kada, A. Németh. – Győr : Universitas-Győr Nonprofit Kft., 2015. – 334 p.
  50. Roadbed improvement of an existing railway line located in cold region by reusing crushed deteriorated ballast / L. Fu, J. Xiao, S. Zhou, D. Zhang, Y. Wang, W. Liu, L. Jiang // Bearing Capacity of Roads, Railways and Airfields : Proc. of the 10th Intern. Conf. (June 28–30, 2017, Athens, Greece). – London, 2017. – P. 1845–1850.
  51. Sadeghi, J. M. Developing Track Ballast Characteristic Guideline In Order To Evaluate Its Performanc / J. M. Sadeghi, J. Ali Zakeri, M. Emad Motieyan Najar // International Journal of Railway. – 2016. – Vol. 9. – Іss. 2. – P. 27–35. doi: 10.7782/IJR.2016.9.2.027
  52. Selig, E. T. Track Geotechnology and Substructure Management Ernest / T. Selig, John M. Waters. – London : Thomas Telford, 1994. – 446 р.
  53. Shakedown behaviors of railway ballast under cyclic loading / Junhua Xiao, De Zhang, Kai Wei, Zhe Luo // Construction and Building Materials. – 2017. – Vol. 155. – Р. 1206–1214. doi: 10.1016/j.conbuildmat.2017.07.225
  54. Shi, X. Prediction of permanent Deformation in Railway Track : PhD thesis / Х. Shi ; University of Nottingham. – Nottingham, 2009. – 262 р.
  55. Some results on the properties and behavior of railway ballast / E. Fortunato, A. Paixão, S. Fontul, J. Pires // Bearing Capacity of Roads, Railways and Airfields : Proc. of the 10th Intern. Conf. (June 28–30, 2017, Athens, Greece). – London, 2017. – Р. 1877–1884.
  56. Sun, Y. Identification of ballast grading for rail track / Yifei Sun, Chen Chen, Sanjay Nimbalkar // Journal of Rock Mechanics and Geotechnical Engineering. – 2017. – Vol. 9. – Iss. 5.– P. 945–954. doi: 10.1016/j.jrmge.2017.04.006
  57. Szalóki, F. Múlt, jelen, jövő az EU-s támogatások tükrében [Electronic resource] // XVIII Közlekedésfejlesztési és Beruházási Konferencia (Bükfürdő, 2017, April 26–28). – Bükfürdő, 2017. – Available at: http://ktenet.hu/download.php?edid=1484 – Title from the screen. – Accessed : 28.02.2018.
  58. Track ballast in Austria: Parts 1, 2, 3 [Electronic resource]. – P. 1–11. – Available at: https://www.plassertheurer.com/fileadmin/user_upload/Mediathek/Publikationen/ri_12888990.pdf. – Title from the screen. – Accessed : 14.05.2018.
  59. Weinreich, Z. Nagysebességű vasutak pályafenntartási kitűzése / Z. Weinreich // Sínek Világa. – 2011. – Vol. 53, No 6. – P. 27–31.
  60. Wichtmann, T. Effect of uniformity coefficient on G/Gmax and damping ratio of uniform to well graded quartz sands / T. Wichtmann, T. Triantafyllidis // Journal of Geotechnical and Geoenvironmental Engineering. – 2013. – Vol. 139. – Іss. 1. – P. 59–72.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)