IMPLEMENTATION OF THE DYNAMIC, COMPETITIVE AND FUZZY MODELS FOR PLANNING OF THE MULTI-PRODUCT FLOWS IN TRANSPORT NETWORKS

V. V. Skalozub, L. O. Panik

Abstract


Purpose. The purpose of the article is to develop a new unified procedure for planning of the fuzzy multi-product, dynamic and competitive flows in the transport networks and in the information network systems. The procedure is based on the use of the parallel synchronous algorithms for inhomogeneous maximum flows calculating. Methodology. The paper proposes the mathematical models’ classification of the tasks for planning the flows in transport networks. The possibilities of using the unified procedure and the parallel synchronous algorithm for calculating the maximum inhomogeneous flows for implementation of the tasks for planning multi-product, fuzzy, dynamic and competitive flows are investigated. The efficiency and universality of the proposed methods for the planning inhomogeneous flows is established by comparing the results of the calculations obtained in the article with the known results. Findings. The article proposes classification of the mathematical models for the planning inhomogeneous flows in the transport networks. The unified procedure and the parallel synchronous algorithm for planning fuzzy multi-product, dynamic and competitive flows in the transport networks have been developed. The tasks of the optimal distribution of the fuzzy multi-product, dynamic and competitive flows in the transport networks are realized. Originality. The article describes the new unified procedure for planning fuzzy multi-product, dynamic and competitive flows in the transport and information systems, using the parallel synchronous algorithms for calculating maximum flows. The procedure allows us to calculate the local extrema of the optimal flows distribution models. Practical value. The practical value of the obtained results is determined by the unified capabilities and the procedure efficiency, as well as the parallel synchronous algorithm designed to calculate the maximum multi-product flows in transport networks. The developed procedure provides the possibility to solve the analysis and planning problems of the multi-product flows in the networks for dynamic, fuzzy and competitive models for the distribution of the transport and information flows.


Keywords


transport networks, planning models for maximum inhomogeneous flows, fuzzy and dynamic flows, competitive information flows, parallel algorithms

References


Shtayn, K., Rivest, R., Kormen, T., & Leyzerson, C. (2010). Algoritmy: postroenie i analiz. Moscow: Publisher Vilyams. (in Russian)

Osin, V. N. (2014) Effektivnoe raspredelenie informatsionnykh potokov v setevoy informatsionnoy sisteme na osnove nechetkikh modeley. (Avtoreferat dysertatsii kandydata tekhnicheskikh nauk). Tambov State Technical University, Tambov. (in Russian)

Skalozub, V. V., Tseytlin, S. Y., & Cherednichenko, M. S. (2016). Intellektualnye informatsionnye tekhnologii i sistemy zheleznodorozhnogo transporta. In A. I. Mikhaleva (Ed.), Sistemnye tekhnologii modelirovaniya slozhnykh protsessov: Monografiya (pp. 560-589). Dnipro. (in Russian)

Skalozub, V. V., & Panik, L. A. (2007). Modelirovanie i analiz potokovykh zadach s neodnorodnymi nositelyami. Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, 19, 125-133. (in Russian)

Skalozub, V. V., & Panik, L. O. (2017). Paralelni synkhronni alhorytmy analizu ta planuvannia neodnoridnykh potokiv u transportnykh merezhakh. System technology: Regional intercollegiate collection of scientific works, 5(112), 183-197. (in Ukranian)

Fillips, D. I., & Garsia-Dias, A. (1984). Metody analiza setey. Moscow: Publisher Mir. (in Russian)

Bozhenyuk, А. & Gerasimenko, E. (2013). Algorithm for Monitoring Minimum Cost in Fuzzy Dynamic Networks. Information Technology and Management Science, 16(1), 53-59. doi: 10.2478/itms-2013-0008 (in English)

Grigoriadis, M. D., & Khachiyan, L. G. (1996). Approximate minimum-cost multicommodity flows in $$tilde O$$ (ɛ −2 KNM) timetime. Mathematical Programming, 75(3), 477-482. doi: 10.1007/bf02592195 (in English)

Holzhauser, M., Krumke, S. O., & Thielen, C. (2016). Maximum flows in generalized processing networks. Journal of Combinatorial Optimization, 33(4), 1226-1256. doi: 10.1007/s10878-016-0031-y (in English)

Kovacs, P. (2013). Minimum-cost flow algorithms: An experimental evaluation EGRES Technical Report. EGRES Technical Report, 4, 1-40. Retrieved from https://web.cs.elte.hu/egres/tr/egres-13-04.pdf (in English)

Bozhenyuk, A. V., Gerasimenko, E. M., Kacprzyk, J., & Rozenberg, I. N. (2016). Maximum and Minimum Cost Flow Finding in Networks in Fuzzy Conditions. Flows in Networks Under Fuzzy Conditions, 23-75. Cham: Springer. doi: 10.1007/978-3-319-41618-2_2 (in English)

Nasrabadi, E., & Hashemi, S. M. (2010). Minimum cost time-varying network flow problems. Optimization Methods and Software, 25(3), 429-447. doi :10.1080/10556780903239121 (in English)

Schiopu, C., & Ciurea, E. (2016). The Maximum Flows in Planar Dynamic Networks. International Journal of Computers Communications & Control, 11(2), 282-291. doi: 10.15837/ijccc.2016.2.2444 (in English)

Sifaleras, A. (2013). Minimum cost network flows: Problems, algorithms, and software. Yugoslav Journal of Operations Research, 23(1), 3-17. doi: 10.2298/YJOR121120001S (in English)


GOST Style Citations


  1. Алгоритмы: построение и анализ : [пер. с англ.] / Клиффорд Штайн, Рональд Линн Ривест, Томас Кормен, Чарльз Эрик Лейзерсон. – 2-е изд. – Москва : Вильямс, 2010. – 1296 с.
  2. Осин, В. Н. Эффективное распределение информационных потоков в сетевой информационной системе на основе нечетких моделей : автореф. дис. … канд. техн. наук : 05.25.05 / Осин Вячеслав Николаевич ; Тамбов. гос. техн. ун-т. – Тамбов, 2014. – 20 с.
  3. Скалозуб, В. В. Интеллектуальные информационные технологии и системы железнодорожного транспорта / В. В. Скалозуб, С. Ю. Цейтлин, М. С. Чередниченко // Системные технологии моделирования сложных процессов : монография / под общ. ред. А. И. Михалёва. – Днепр, 2016. – C. 560–589.
  4. Скалозуб, В. В. Моделирование и анализ потоковых задач с неоднородными носителями / В. В. Скалозуб, Л. А. Паник // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2007. – Вип. 19. – C. 125–133.
  5. Скалозуб, В. В. Паралельні синхронні алгоритми аналізу та планування неоднорідних потоків у транспортних мережах / В. В. Скалозуб, Л. О. Панік // Системні технології : регіон. міжвуз. зб. наук. пр. – Дніпро, 2017. – № 5 (112). – С. 183–197.
  6. Филлипс, Д. И. Методы анализа сетей / Д. И. Филлипс, А. Гарсиа-Диас. – Москва : Мир, 1984. – 496 с.
  7. Bozhenyuk, А. Algorithm for Monitoring Minimum Cost in Fuzzy Dynamic Networks
    / Alexander Bozhenyuk, Evgeniya Gerasimenko // Information Technology and Management Science. – 2013. – Vol. 16. – Iss. 1. – P. 53–59. doi: 10.2478/itms-2013-0008
  8. Grigoriadis, M. D. Approximate minimum-cost multicommodity flows in $$\tilde O$$ (ɛ −2 KNM) timetime / M. D. Grigoriadis, L. G. Khachiyan // Mathematical Programming. – 1996. – Vol. 75. – Iss. 3. – P. 477–482. doi: 10.1007/BF02592195
  9. Holzhauser, M. Maximum flows in generalized processing networks / Michael Holzhauser, Sven O. Krumke, Clemens Thielen // Journal of Combinatorial Optimization. – 2016. – Vol. 33. – Iss. 4. – P. 1226–1256. doi: 10.1007/s10878-016-0031-y
  10. Kovacs, P. Minimum-cost flow algorithms: An experimental evaluation EGRES Technical Report [Электронный ресурс] / P. Kovacs // EGRES Technical Report. – 2013. – No. 2013-04. – P. 1–40. – Режим доступа: https://web.cs.elte.hu/egres/tr/egres-13-04.pdf – Загл. с экрана. – Проверено : 17.05.2018.
  11. Maximum and Minimum Cost Flow Finding in Networks in Fuzzy Conditions / A. V. Bozhenyuk, E. M. Gerasimenko, J. Kacprzyk, I. N. Rozenberg // Flows in Networks Under Fuzzy Conditions. – Cham : Springer, 2016. – P. 23–75. doi: 10.1007/978-3-319-41618-2_2
  12. Nasrabadi, E. Minimum cost time-varying network flow problems / E. Nasrabadi, S. M. Hashemi // Optim. Methods and Software. – 2010. – Vol. 25. – Iss. 3. – P. 429–447.
    doi: 10.1080/10556780903239121
  13. Schiopu, C. The Maximum Flows in Planar Dynamic Networks / C. Schiopu, E. Ciurea // Intern. Journal of Computers Communications&Control. – 2016. – Vol. 11. – Iss. 2. – P. 282–291. doi: 10.15837/ijccc.2016.2.2444
  14. Sifaleras, A. Minimum cost network flows: problems, algorithms, and software / A. Sifaleras // Yugoslav Journal of Operations Research. – 2013. – Vol. 23. – Iss. 1. – Р. 3–17.doi: 10.2298/YJOR121120001S


DOI: https://doi.org/10.15802/stp2018/133742

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)