SPECIFIC ASSESSMENT METHOD OF RAILWAY BALLAST PARTICLE DEGRADATION BASED ON UNIQUE LABORATORY TEST

Authors

DOI:

https://doi.org/10.15802/stp2018/134655

Keywords:

railway ballast material, particle degradation & breakage, specific laboratory test method, dynamic fatigue test

Abstract

Purpose. There are specific, standardized laboratory test methods to assess railway ballast particle degradation; they are the Los Angeles (EN 1097-2) and the Micro-Deval abrasion (EN 1097-1) tests. These testing methods can’t take into consideration the real railway stress-strain circumstances of ballast materials, and they particles. In this paper the authors represent a specific laboratory fatigue breakage test of railway ballast materials. With this kind of testing method, the deterioration process of railway ballast particles can be assessed more realistic and precisely. Methodology. A special layer structure is built-up with elastic sublayer system and 30 cm thick ballast samples (from two different type andesite base rocks) that is loaded by dynamic, pulsating forces. Particle size distribution functions have to be recorded before and after a more million cycle fatigue test, but intermediate measurements are also executed. The measured data should be processed, and different parameters have to be calculated that are offered by international literature and researches. The test doesn’t consider the particle breakage due to hand-made and machine-made tamping, but it can simulate particle degradation due to more years’ railway traffic in laboratory circumstances. Findings. There is a development after the R&D work made and published in 2014: in 2017 and 2018 years the ballast particle deterioration process is given according to more intermediate fatigue cycles with individual measurements, that show more precise «picture» about the full particle degradation, i.e. breakage process. The authors give more precise correlation functions between the calculated parameters and load cycles during fatigue. Originality. The paper summed up the results of a specific developed laboratory test method for assessment of the breakage process of railway ballast particles according to two different railway ballast materials from andesite base rocks. Practical value. The results help with the calculation of approximate time interval of required ballast screening (cleaning) work in the future. This research is supported by the ÚNKP-17-4 New National Excellence Program of Ministry of Human Capacities.

Author Biographies

S. Fischer, Szechenyi Istvan University

Dep. «Transport Infrastructure», Szechenyi Istvan University, Egyetem Sq., 1, Gyor, Hungary, Hungary, 9026,
tel. + 36 (96) 613 544,
Email: fischersz@sze.hu

A. Nemeth, Szechenyi Istvan University

Dep. «Transport Infrastructure», Szechenyi Istvan University, Egyetem Sq., 1, Gyor, Hungary, Hungary, 9026,
tel. + 36 (96) 613 544,
Email: nemeth.attila@sze.hu

D. Harrach, Szechenyi Istvan University

Dep. «Transport Infrastructure», Szechenyi Istvan University, Egyetem Sq., 1, Gyor, Hungary, Hungary, 9026,
tel. + 36 (96) 613 541,
Email: harrach.daniel@sze.hu

E. Juhasz, Szechenyi Istvan University

Dep. «Transport Infrastructure», Szechenyi Istvan University, Egyetem Sq., 1, Gyor, Hungary, Hungary, 9026, 
tel. + 36 (96) 613 544,
Email: era__juhasz@hotmail.com

References

Ambrus, K., & Pallós, І. (2012). Útépítési zúzottkövek és zúzottkavicsok aszfaltkeverékek gyártásához, felületi bevonatok készítéséhez. Retrieved from http: //docplayer.hu/9502775-Utepitesi-zuzottkovek-es-zuzottkavicsok-aszfaltkeverekek-gyartasahoz-feluleti-bevonatok-keszitesehez.html (in Hungarian)

Arangie, P. B. D. (1997). The influence of ballast fouling on the resilient behaviour of the ballast pavement layer. Proceedings of 6th International Heavy Haul Railway Conference (Cape Town, April 6-10), 241-256. (in English)

Claisse, P., & Calla, C. (2006). Rail ballast: conclusions from a historical perspective. Proceedings of the Institution of Civil Engineers-Transport, 159(2), 69-74. doi: 10.1680/tran.2006.159.2.69 (in English)

Douglas, S. C. (2013). Ballast Quality and Breakdown during Transport. 2013 Joint Rail Conference: Confe-rence Paper (Knoxville, Tennessee, USA, April 15-18).doi: 10.1115/JRC2013-2553 (in English)

TL DBS 918 061: Technische Lieferbedingungen Gleisschotter. TL DBS 918 061: Technical delivery conditions Railway ballast. (2006). Berlin, 2006/08. (in German)

Fischer, S. (2015). A vasúti zúzottkövek aprózódásvizsgálata egyedi laboratóriumi módszerrel. Sínek Világa, 57(3), 12-19. (in Hungarian)

Fischer, S. (2017). Breakage Test of Railway Ballast Materials with New Laboratory Method. Periodica Polytechnica Civil Engineering, 61(4), 794-802. doi: 10.3311/PPci.8549 (in English)

Gálos, M., Kárpáti, L., & Szekeres, D. (2011). Ágyazati kőanyagok: A kutatás eredményei. 2 rész. Sínek Világa, 55(1), 6-13. (in Hungarian).

Indraratna, B., Salim, W., & Rujikiatkamjorn, C. (2011). Advanced rail geotechnology – Ballasted track. London: CRC Press. (in English)

Kausay, T. (2011). Adalékanyagok kőzetfizikai tulajdonságai. Út- és hídépítési műszaki előírások és alkalmazási tapasztalataik. Budapest. Retrived from http://www.betonopus.hu/szakmernoki/kozut-2-adalekanyag-kozetfizika.pdf (in Hungarian)

Kausay, T. (2008). Zúzott betonadalékanyagok kőzetfizikai tulajdonságai a szabályozásban. Mérnökgeológia Kőzetmechanika, 259-270. (in Hungarian)

Lichtberger, B. (2005). Track compendium: Formation, Permanent Way, Maintenance, Economics. Hamburg: Eurailpress Tetzlaff-Hestra GmbH & Co. (in English)

A 102345/1995 PHMSZ előírás 3. számú módosítása (Modification 3 in MÁV 102345/1995 PHMSZ. ’Railway substructure and ballast quality acceptance regulations instruction’), MÁV (2008). (in Hungarian)

A 102345/1995 PHMSZ előírás 4. számú módosítása. (Modification 4 in MÁV 102345/1995 PHMSZ. ’Railway substructure and ballast quality acceptance regulations instruction’), MÁV (2010). (in Hungarian)

Kőanyaghalmazok mechanikai és fizikai tulajdonságainak vizsgálata. 1. rész: A kopásállóság vizsgálata (mikro-Deval). (Tests for mechanical and physical properties of aggregates. Determination of the resistance to wear (micro-Deval), MSZ EN 1097-1:2012 (2012). (in Hungarian)

Kőanyaghalmazok mechanikai és fizikai tulajdonságainak vizsgálata. 2. rész: Az aprózódással szembeni ellenállás meghatározása. (Tests for mechanical and physical properties of aggregates. Methods for the determination of resistance to fragmentation), MSZ EN 1097-2:2010 (2010). (in Hungarian)

Kőanyaghalmazok vasúti ágyazathoz. (Aggregates for railway ballast). MSZ EN 13450:2003 (2003). (in Hungarian)

Kőanyaghalmazok termikus tulajdonságainak és időjárás-állóságának vizsgálati módszerei. 2. rész: Magnézium-szulfátos eljárás. MSZ EN 1367-2 (2010). (in Hungarian)

Kőanyaghalmazok geometriai tulajdonságainak vizsgálata. 3. rész: A szemalak meghatározása. Lemezességi szám. MSZ EN 933-3 (2012). (in Hungarian)

Paiva, C. E. L., Pereira, M. L., & Pimentel, L. L. (2017). Study Of Railway Ballast Fouling By AbrasionOriginated Particles. Railway Engineering: Proc. of the 14th Intern. Conf. (Edinburgh, Scotland, UK, 21st-22nd June 2017). (in English)

Sadeghi, J. M., Zakeri, J. Ali, & Najar, M. E. M. (2016). Developing Track Ballast Characteristic Guideline In Order To Evaluate Its Performanc. International Journal of Railway, 9(2), 27-35. doi: 10.7782/IJR.2016.9.2.027 (in English)

Track ballast in Austria: Parts 1, 2, 3, 1-11. Retrived from https://www.plassertheurer.com/fileadmin/ user_upload/Mediathek/Publikationen/ri_12888990.pdf (in English)

Downloads

Published

2018-06-21

How to Cite

Fischer, S., Nemeth, A., Harrach, D., & Juhasz, E. (2018). SPECIFIC ASSESSMENT METHOD OF RAILWAY BALLAST PARTICLE DEGRADATION BASED ON UNIQUE LABORATORY TEST. Science and Transport Progress, (3(75), 87–94. https://doi.org/10.15802/stp2018/134655

Issue

Section

RAILROAD AND ROADWAY NETWORK