DOI: https://doi.org/10.15802/stp2018/141006

DEFINITION OF «SAFETY BOUNDARY» IN CASE OF TERRORIST ATTACK WITH CHEMICAL AGENTS

M. M. Biliaiev, I. V. Kalashnikov, V. A. Kozachyna

Abstract


Purpose. The work involves the development of a 2D numerical model for calculating the «safety boundary» in the case of a terrorist attack using a chemical agent. The safety boundary is the boundary behind which the emission of a dangerous substance in a terrorist act will lead to undesirable consequences at the site of the attack object. Methodology. To solve this problem, we used an equation conjugated with the equation of mass transfer in the atmospheric air of a chemical agent ejected in the case of a terrorist attack. The simulation takes into account the field of wind speed, atmospheric diffusion, the release intensity of a hazardous substance. For numerical integration of the modeling conjugated equation, new variables are introduced and an implicit difference splitting scheme is applied. A feature of the developed numerical model is the ability to quickly assess the position of the safety boundary near a possible object of attack. Findings. The developed numerical model and computer program can be used for a scientifically grounded assessment of the safety boundary position near significant objects in the event of possible terrorist attacks using chemical (biological) agents. The constructed numerical model can be implemented on computers of small and medium power, which makes it possible to widely use it to solve the problems of the considered class, when developing an emergency response plan. The results of a computational experiment are presented that allow one to evaluate the possibilities of the proposed method for calculating the position of the safety boundary in the case of a terrorist attack using a chemical agent. Originality. An effective method for calculating the position of the safety boundary near the facility, which may be the target of a terrorist attack using a chemically hazardous substance, is proposed. The method is based on the numerical integration of the equation, which is conjugated to the equation of mass transfer of chemically hazardous substances in the atmospheric air. Practical value. The proposed method for calculating the position of the safety boundary near the facility, which may be the target of a terrorist attack using a chemically hazardous substance, can be used to organize protective measures aimed at minimizing the consequences of terrorist attacks.


Keywords


terrorist attack; chemical pollution; conjugated equation; numerical model; air pollution

References


Alymov, V. T., & Tarasova, N. P. (2004). Tekhnogennyy risk. Analiz i otsenka: Uchebebnoe posobie dlya vuzov. Moscow: Akademkniga. (in Russian)

Belyaev, N. N., Gunko, Y. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)

Marchuk G.I. Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy [Mathematical modeling in the environmental problem]. Moscow, Nauka Publ., 1982. 320 p. (in Russian)

Belyaev, N. N., Gunko, Y. Y., Kirichenko, P. S., & Muntyan, L. Y. (2017). Otsenka tekhnogennogo riska pri emissii opasnykh veshchestv na zheleznodorozhnom transporte. Krivoi Rog: Kozlov R. A. (in Russian)

Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Belyaev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kiev: Naukova dumka. (in Russian)

Barret, A. M. (2009). Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectivness. (Dissertation of Doctor of Philosophy). Carnegie Mellon University, Pittsburg, Pennsylvania, USA. (in English)

Berlov, O. V. (2016). Atmosphere protection in case of emergency during transportation of dangerous cargo. Science and Transport Progress, 1(61), 48-54. doi: 10.15802/stp2016/60953 (in English)

Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security. doi: 10.1007/978-94-007-1359-8_15 (in English)

Cefic Guidance on safety Risk Assessment for Chemical Transport Operations J Verlinden. (n.d.). Retrived from http://www.era.europa.eu/DocumentRegister/Documents/Cefic%20guidance%20on%20risk%20assessment.pdf (in English)

Tumanov, A., Gumenyuk, V., & Tumanov, V. (2017). Development of advanced mathema-tical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility. IOP Conf. Series: Earth and Environmental Science, 90, 1-11. doi: 10.1088/1755-1315/90/1/012027 (in English)

Zahra Naserzadeh, Farideh Atabi, Faramarz Moattar, & Naser Moharram Nejad. (2017). Effect of barriers on the status of atmospheric pollution by mathematical modeling. Bioscience Biotechnology Research Communication, 10(1), 192-204. (in English)

Cao, C., Li, C., Yang, Q. & Zhang, F. (2017). Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain. Sustainability, 9(11), 2103. doi: 10.3390/su9112103 (in English)

Government of Alberta. Protective Action Criteria: A Review of Their Derivation, Use, Advantages and Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrived from http://open.alberta.ca/publications/9781460131213 (in English)

Ondrej Zavila, Pavel Dobes, Jakub Dlabka, & Jan Bitta. (2015). The analysis of the use of mathematical modeling for emergency planning purposes. Bezpecnostni vyzkum. The Science for Population Protection, 2, 1-9. (in English)


GOST Style Citations


  1. Алымов, В. Т. Техногенный риск. Анализ и оценка : учеб. пособие для вузов / В. Т. Алымов, Н. П. Тарасова. – Москва : Академкнига, 2004. – 118 с.
  2. Беляев, Н. Н. Защита зданий от проникновения в них опасных веществ : монография / Н. Н. Беляев, Е. Ю. Гунько, Н. В. Росточило. – Днепропетровск : Акцент ПП, 2014. – 136 с.
  3. Марчук, Г. И. Математическое моделирование в проблеме окружающей среды / Г. И. Марчук. – Москва : Наука, 1982. – 320 с.
  4. Оценка техногенного риска при эмиссии опасных веществ на железнодорожном транспорте / Н. Н. Беляев, Е. Ю. Гунько, П. С. Кириченко, Л. Я. Мунтян. – Кривой Рог : Р. А. Козлов, 2017. – 127 с.
  5. Численное моделирование распространения загрязнения в окружающей среде / М. З. Згуровский, В. В. Скопецкий, В. К. Хрущ, Н. Н. Беляев. – Киев : Наук. думка, 1997. – 368 с.
  6. Barret, A. M. Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectiveness : Degree of Doctor of Philosophy / Anthony Michael Barret ; Carnegie Mellon University. – Pittsburg, Pennsylvania, 2009. – 123 p.
  7. Berlov, O. V. Atmosphere protection in case of emergency during transportation of dangerous cargo / O. V. Berlov // Наука та прогрес транспорту. – 2016. – № 1 (61). – С. 48–54. doi: 10.15802/stp2016/60953
  8. Biliaiev, M. M. Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography / M. M. Biliaiev, M. M. Kharytonov // NATO Science for Peace and Security. Series C: Environmental Security. – Dordrecht, 2012. – P. 87–91. doi: 10.1007/978-94-007-1359-8_15
  9. Cefic Guidance on safety Risk Assessment for Chemical Transport Operations J Verlinden [Электронный ресурс]. – Режим доступа: http://www.era.europa.eu/Document-Register/Documents/ Cefic%20guidance%20on%20risk%20assessment.pdf – Загл. с экрана. – Проверено : 29.01.2018.
  10. Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility / Aleksandr Tumanov, Vasily Gumenyuk, Vladimir Tumanov // IOP Conf. Series: Earth and Environmental Science. – 2017 – Vol. 90. – P. 1-11. doi: 10.1088/1755-1315/90/1/012027
  11. Effect of barriers on the status of atmospheric pollution by mathematical modeling / Zahra Naserzadeh, Farideh Atabi, Faramarz Moattar, Naser Moharram Nejad // Bioscience Biotechnology Research Communication. – 2017. – Vol. 10 (1). – P. 192–204.
  12. Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain / Cejun Cao, Congdong Li, Qin Yang, Fanshun Zhang // Sustainability MDPI, Open Access Journal. – 2017. – Vol. 9. – Iss. 11. – P. 2103. doi:10.3390/su9112103
  13. Protective Action Criteria. A Review of Their Derivation, Use, Advantages and Limitations [Электронный ресурс] / Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. – Edmonton, Alberta, 2017. – Режим доступа: http://open.alberta.ca/publications/9781460131213 – Загл. с экрана. – Проверено : 14.06.2018.
  14. The analysis of the use of mathematical modeling for emergency planning purposes / Ondrej Zavila, Pavel Dobes, Jakub Dlabka, Jan Bitta // Bezpecnostni vyzkum. The Science for Population Protection. – 2015. – № 2. – P. 1–9.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)