DOI: https://doi.org/10.15802/stp2018/146437

CALCULATION OF «VULNERABILITY» ZONE IN CASE OF TERRORIST ATTACK WITH CHEMICAL AGENTS

M. M. Biliaiev, O. V. Berlov, I. V. Kalashnikov, V. A. Kozachyna

Abstract


Purpose. The work involves the development of a numerical model for calculating the «vulnerability» zone of a possible terrorist attack objective with the use of a chemical agent in a built-up environment. The «vulnerability» zone is a territory near the attack objective, where the emission of a chemical agent during the attack will lead to undesirable consequences. The emission of a chemical agent outside the «vulnerability» zone will not create a dangerous concentration near the attack objective. Methodology. To solve this problem, we use the equation for the velocity potential, on the basis of which we determine the wind stream velocity field, and the equation adjoint to the equation of mass transfer in the atmospheric air of the chemical agent emitted in the event of a terrorist attack. During simulation, we take into account the uneven wind stream velocity field, atmospheric diffusion and the rate of emission of a chemically hazardous substance. For the numerical integration of the velocity potential equation, we use the method of A. A. Samarsky. For numerical solution of the adjoint equation, we introduce new variables and use an implicit difference splitting scheme. The peculiarity of the developed numerical model is the possibility of operative estimation of the «vulnerability» zone near a possible attack objective. Findings. The developed numerical model and computer program can be used for scientifically grounded assessment of the «vulnerability» zone near significant facilities in the event of possible attacks with the use of chemical (biological) agents. The constructed numerical model can be implemented on computers of small and medium power, which allows it to be widely used to solve the problems of this class when developing the emergency response plan. The results of the computational experiment are presented, which allow us to evaluate the possibilities of the proposed numerical model. Originality. An effective numerical model is proposed for calculating the «vulnerability» zone near the facility, which may be the target of a terrorist attack with the use of a chemical agent. The model is based on the numerical integration of the velocity potential equation and the equation adjoint to the equation of mass transfer of a chemically dangerous substance in the atmosphere. Practical value. The developed model can be used to organize protective actions near the target facility of a possible chemical attack by terrorists.


Keywords


terrorist attack; chemical pollution; «vulnerability» zone; adjoint equation; numerical simulation; air contamination

References


Alymov, V. T., & Tarasova, N. P. (2004). Tekhnogennyy risk. Analiz i otsenka: Uchebebnoe posobie dlya vuzov. Moscow: Akademkniga. (in Russian)

Belyaev, N. N., Gunko, Y. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)

Marchuk, G. I. (1982). Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy. Moscow: Nauka. (in Russian)

Belyaev, N. N., Gunko, Y. Y., Kirichenko, P. S., & Muntyan, L. Y. (2017). Otsenka tekhnogennogo riska pri emissii opasnykh veshchestv na zheleznodorozhnom transporte. Krivoi Rog: Kozlov R. A. (in Russian)

Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Belyaev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kуiv: Naukova dumka. (in Russian)

Barret, A. M. (2009). Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectiveness. (Dissertation of Doctor of Philosophy). Carnegie Mellon University, Pittsburg. (in English)

Berlov, O. V. (2016). Atmosphere protection in case of emergency during transportation of dangerous cargo. Science and Transport Progress, 1(61), 48-54. doi: 10.15802/stp2016/60953 (in English)

Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security, 87-91. doi: 10.1007/978-94-007-1359-8_15 (in English)

CEFIC Guidance on safety Risk Assessment for Chemical Transport Operations. Retrived from https://app.croneri.co.uk/news/cefic-guidance-safety-risk-assessment-chemical-transport-operations?product=139 (in English)

Tumanov, A., Gumenyuk, V., & Tumanov, V. (2017). Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility. IOP Conf. Series: Earth and Environmental Science, 90. doi: 10.1088/1755-1315/90/1/012027 (in English)

Zahra Naserzadeh, Farideh Atabi, Faramarz Moattar, & Naser Moharram Nejad. (2017). Effect of barriers on the status of atmospheric pollution by mathematical modeling. Bioscience Biotechnology Research Communication, 10(1), 192-204. (in English)

Cao, C., Li, C., Yang, Q., & Zhang, F. (2017). Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain. Sustainability, 9(11). doi: 10.3390/su9112103 (in English)

Government of Alberta. Protective Action Criteria: A Review of Their Derivation, Use, Advantages and Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrived from http://open.alberta.ca/publications/9781460131213 (in English)

Ondrej Zavila, Pavel Dobes, Jakub Dlabka, & Jan Bitta. (2015). The analysis of the use of mathematical modeling for emergency planning purposes. Bezpecnostni vyzkum. The Science for Population Protection, 2. (in English)


GOST Style Citations


  1. Алымов, В. Т. Техногенный риск. Анализ и оценка : учеб. пособие для вузов / В. Т. Алымов, Н. П. Тарасова. – Москва : Академкнига, 2004. – 118 с.
  2. Беляев, Н. Н. Защита зданий от проникновения в них опасных веществ : монография / Н. Н. Беляев, Е. Ю. Гунько, Н. В. Росточило. – Днепропетровск : Акцент ПП, 2014. – 136 с.
  3. Марчук, Г. И. Математическое моделирование в проблеме окружающей среды / Г. И. Марчук. – Москва : Наука, 1982. – 320 с.
  4. Оценка техногенного риска при эмиссии опасных веществ на железнодорожном транспорте / Н. Н. Беляев, Е. Ю. Гунько, П. С. Кириченко, Л. Я. Мунтян. – Кривой Рог : Р. А. Козлов, 2017. – 127 с.
  5. Численное моделирование распространения загрязнения в окружающей среде / М. З. Згуровский, В. В. Скопецкий, В. К. Хрущ, Н. Н. Беляев. – Киев : Наук. думка, 1997. – 368 с.
  6. Barret, A. M. Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectiveness : Degree of Doctor of Philosophy / Anthony Michael Barret ; Carnegie Mellon University. – Pittsburg, Pennsylvania, 2009. – 123 p.
  7. Berlov, O. V. Atmosphere protection in case of emergency during transportation of dangerous cargo / O. V. Berlov // Наука та прогрес транспорту. – 2016. – № 1 (61). – С. 48–54. doi: 10.15802/stp2016/60953
  8. Biliaiev, M. M. Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography / M. M. Biliaiev, M. M. Kharytonov // NATO Science for Peace and Security. Series C: Environmental Security. – Dordrecht, 2012. – P. 87–91. doi: 10.1007/978-94-007-1359-8_15
  9. CEFIC Guidance on safety Risk Assessment for Chemical Transport Operations [Electronic resource]. – Available at: https://app.croneri.co.uk/news/cefic-guidance-safety-risk-assessment-chemical-transport-operations?product=139 – Title from the screen. – Accessed : 29.01.2018.
  10. Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility / Aleksandr Tumanov, Vasily Gumenyuk, Vladimir Tumanov // IOP Conf. Series: Earth and Environmental Science. – 2017. – Vol. 90. doi: 10.1088/1755-1315/90/1/012027
  11. Effect of barriers on the status of atmospheric pollution by mathematical modeling / Zahra Naserzadeh, Farideh Atabi, Faramarz Moattar, Naser Moharram Nejad // Bioscience Biotechnology Research Communication. – 2017. – Vol. 10 (1). – P. 192–204.
  12. Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain / Cejun Cao, Congdong Li, Qin Yang, Fanshun Zhang // Sustainability. – 2017. – Vol. 9. – Іss. 11. doi: 10.3390/su9112103
  13. Protective Action Criteria. A Review of Their Derivation, Use, Advantages and Limitations [Electronic resource] / Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. – Edmonton, Alberta, 2017. – Available at: http://open.alberta.ca/publications/
    9781460131213 – Title from the screen. – Accessed : 14.06.2018.
  14. The analysis of the use of mathematical modeling for emergency planning purposes / Ondrej Zavila, Pavel Dobes, Jakub Dlabka, Jan Bitta // Bezpecnostni vyzkum. The Science for Population Protection. – 2015. – No. 2.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)