DOI: https://doi.org/10.15802/stp2018/154641

DEVELOPMENT OF THE ALGORITHMS FORMATION OF ENERGY- OPTIMIZED TRAINS TRAFFIC MODES

M. G. Prytula, O. A. Pasechnyk

Abstract


Purpose. The paper involves the development of algorithmic support for simulation and optimization of train traffic modes. Methodology. To describe the process of the train movement in spatial coordinates with the distributed mass along the trajectory of motion, a system model is proposed. The model takes into account traction and support parameters and their changes depending on external and internal factors. For a numerical integration of a system model, a finite-difference method is used. In addition, iterative procedures are developed to meet the boundary conditions, the formation of a sequence of traction, braking and idling modes with appropriate parameters to satisfy the criterion of optimality of traffic and technical limitations with sufficient accuracy. The criterion of optimality includes fuel and energy resources, the frequency of changes in the modes of work of traction means (significantly affect the wear of drives), cost rates, etc. Findings. The developed algorithmic, software and information support provided: calculation of driving modes of arbitrary, including standard ones for formation of traffic schedules, calculation of inter-station and station intervals, and research of influence of extreme parameters of trains on their modes of operation. The system provides for the adaptation of the parameters of the train model based on the results of experimental trips. Originality. The paper proposes the task of calculating train driving modes as a problem of optimal control and proposes a quick method for its solution. This ensured the automation of the process of solving a large set of direct and inverse modes with different optimality criteria. Practical value. The proposed approach to the formulation and solution of tasks of modeling and optimization of train driving modes was tested in the process of calculating the main components for the formation of traffic schedules, the selection of optimal parameters for the reconstruction of the roadbed for high-speed and new types of trains.


Keywords


traction–energy calculations; optimal mode; mathematical support; mathematical model of train; identification of model parameters; direct and inverse problems

References


Afanasev, V. N., Kolmanovskiy, V. B., & Nosov, V. R. (2003). Matematicheskaya teoriya konstruirovaniya sistem upravleniya: uchebnik dlya vuzov. Moscow: Vysshaya shkola. (in Russian)

Bodnar, B. Y., Kapitsa, M. I., Afanasov, A. M., & Kyslyi, D. N. (2015). Definition of Energy Saving Acceleration Modes of Trains. Science and Transport Progress, 5(59), 40-52. doi: 10.15802/stp2015/55359 (in Ukrainian)

Kulbashna, N. I., Tarnovetska, A. H., & Balas, O. І. (2014). Novi pidkhody shchodo skladannia ratsionalnykh rezhymiv vodinnia rukhomoho skladu po marshrutakh. Proceedings of the International Conference Problemy ta perspektyvy rozvytku tekhnichnykh zasobiv transportu ta system avtomatyzatsii, October, 01-03, 2014, Kharkiv. 84-85. Kharkiv: O. M. Beketov National University of Urban Economy in Kharkiv. (in Ukrainian)

Pravila tyagovykh raschetov dlya poezdnoy raboty. (1985). Moscow: Transport. (in Russian)

Prytula, M. H., & Shpakovych, R. R. (2007). Modeliuvannia ta rozrakhunok optymalnykh parametriv rukhu poizdiv. Fizyko-matematychne modeliuvannia ta informatsiini tekhnolohii, 5, 139-145. (in Ukrainian)

Soroka, K. O., & Lychov, D. A. (2015). The Content Model and the Equations of Motion of Electric Vehicle. Science and Transport Progress. 3(57), 97-106. doi: 10.15802/stp2015/46056 (in Ukrainian)

Soroka, K. O., Pavlenko, T. P., & Lychov, D. A. (2017). System for Automatic Selection of the Speed Rate of Electric Vehicles for Reducing the Power Consumption. Science and Transport Progress, 3(69), 77-91. doi: 10.15802/stp2017/104360 (in Ukrainian)

Capasso, A., Lamedica, R., Gatta, F. M., Geri, A., Maccioni, M., Ruvio, A., … Carones, N. (2016). Individual driving style impact on traction energy consumption in railway lines: A simulation model. 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). doi: 10.1109/speedam.2016.7525929 (in English)

Wang, P. (2017). Train Trajectory Optimization Methods for Energy-Efficient Railway Operations: doctoral thesis. Retrived from http://clc.am/2oMizA (in English)

Haahr, J. T., Pisinger, D., & Sabbaghian, M. (2017). A dynamic programming approach for optimizing train speed profiles with speed restrictions and passage points. Transportation Research Part B: Methodological, 99, 167-182. doi: 10.1016/j.trb.2016.12.016 (in English)

Scheepmaker, G. M., Goverde, R. M. P., & Kroon, L. G. (2017). Review of energy-efficient train control and timetabling. European Journal of Operational Research, 257(2), 355-376. doi: 10.1016/j.ejor.2016.09.044 (in English)

Albrecht, A., Howlett, P., Pudney, P., Vu, X., & Zhou, P. (2016). The key principles of optimal train control – Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points. Transportation Research Part B: Methodological, 94, 482-508. doi: 10.1016/j.trb.2015.07.023 (in English)

Albrecht, A., Howlett, P., Pudney, P., Vu, X., & Zhou, P. (2016). The key principles of optimal train control –Part 2: Existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques. Transportation Research Part B: Methodological, 94, 509-538. doi: 10.1016/j.trb.2015.07.024 (in English)

Ye, H., & Liu, R. (2017). Nonlinear programming methods based on closed-form expressions for optimal train control. Transportation Research Part C: Emerging Technologies, 82, 102-123. doi: 10.1016/j.trc.2017.06.011 (in English)


GOST Style Citations


  1. Афанасьев, В. Н. Математическая теория конструирования систем управления: учеб. для вузов / В. Н. Афанасьев, В. Б. Колмановский, В. Р. Носов. – Москва: Высш. шк., 2003. – 615 с.
  2. Визначення енергозаощаджуючих режимів розгону поїздів / Б. Є. Боднар, М. І. Капіца, А. М. Афанасов, Д. М. Кислий // Наука та прогрес транспорту. – 2015. – № 5 (59). – С. 40–52. doi: 10.15802/stp2015/55359
  3. Кульбашна, Н. І. Нові підходи щодо складання раціональних режимів водіння рухомого складу по маршрутах / Н. І. Кульбашна, А. Г. Тарновецька, О. І. Балас // Проблеми та перспективи розвитку техн. засобів трансп. та систем автоматизації : матеріали міжнар. наук.-практ. конф. (1.10–3.10.2014) / Харк. нац. ун-т міськ. госп-ва ім. О. М. Бекетова. – Харків, 2014. – С. 84–85.
  4. Правила тяговых расчетов для поездной работы. – Москва: Транспорт, 1985. – 289 с.
  5. Притула, М. Г. Моделювання та розрахунок оптимальних параметрів руху поїздів / М. Г. Притула, Р. Р. Шпакович // Фізико-математичне моделювання та інформаційні технології : наук. зб. – Львів, 2007. – Вип. 5. – С. 139–145.
  6. Сорока, К. О. Змістовна модель та рівняння руху електричного транспорту / К. О. Сорока, Д. О. Личов // Наука та прогрес транспорту. – 2015. – № 3 (57). – С. 97–106. doi: 10.15802/stp2015/46056
  7. Сорока, К. О. Система автоматизованого вибору швидкісного режиму руху засобів електротранспорту з метою зменшення витрат електроенергії / К. О. Сорока, Т. П. Павленко, Д. О. Личов // Наука та прогрес транспорту. – 2017. – № 3 (69). – С. 77–91. doi: 10.15802/stp2017/104360
  8. Individual driving style impact on traction energy consumption in railway lines: A simulation model / A. Capasso, R. Lamedica, F. M. Gatta [et al.] // Intern. Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM) (22.06–24.06.2016) : Conf. Paper. – Anacapri, Italy, 2016. – P. 665–670. doi: 10.1109/SPEEDAM.2016.7525929
  9. Wang, P. Train Trajectory Optimization Methods for Energy-Efficient Railway Operations: doctoral thesis [Електронний ресурс] / Pengling Wang ; Delft University of Technology. – Delft, 2017. – 197 p. – Режим доступу: http://clc.am/2oMizA – Назва з екрана. – Перевірено : 28.12.2018.
  10. Haahr, J. T. A dynamic programming approach for optimizing train speed profiles with speed restrictions and passage points / J. T. Haahr, D. Pisinger, M. Sabbaghian // Transportation Research. Part B: Methodological. – 2017. – Vol. 99. – Р. 167–182. doi: 10.1016/j.trb.2016.12.016
  11. Scheepmaker, G. M. Review of energy efficient train control and timetabling / G. M. Scheepmaker, R. M. P. Goverde, L. G. Kroon // European Journal of Operational Research. – 2017. – Vol. 257. – Іss. 2. – Р. 355–376. doi: 10.1016/j.ejor.2016.09.044
  12. The key principles of optimal train control – Рart 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points / Amie Albrecht, Phil Howlett, Peter Pudney, Xuan Vu, Peng Zhou // Transportation Research. Part B: Methodological. – 2016. – Vol. 94. – Р. 482–508. doi: 10.1016/j.trb.2015.07.023
  13. The key principles of optimal train control – Рart 2: Existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques / Amie Albrecht, Phil Howlett, Peter Pudney, Xuan Vu, Peng Zhou // Transportation Research. Part B: Methodological. – 2016. – Vol. 94. – Р. 509–538. doi: 10.1016/j.trb.2015.07.024
  14. Ye, H. Nonlinear programming methods based on closed-form expressions for optimal train control / Hongbo Ye, Ronghui Liu // Transportation Research. Part C: Emerging Technologies. – 2017. – Vol. 82. – Р. 102–123. doi: 10.1016/j.trc.2017.06.011




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)