DOI: https://doi.org/10.15802/stp2019/159489

DISTRIBUTED DYNAMIC PDE-MODEL OF PROGRAM CONTROL BY UTILIZATION OF THE TECHNOLOGICAL EQUIPMENT OF PRODUCTION LINE

G. K. Kozevnikov, O. M. Pihnastyi

Abstract


Purpose. The article is aimed at designing a control system for the parameters of a production line for an enterprise with a straight flow method of organizing production. Methodology. The production line at the enterprise with a straight flow method of organizing production is a complex dynamic distributed system. The flow route for manufacturing a product for many modern enterprises contains several hundreds of technological operations, in the inter-operating reserve each of which there are thousands of products waiting to be processed. The flow routes of different parts of the same type of products intersect (re-entrant manufacturing systems). This leads to the fact that the distribution of subjects of labor along the technological route has a significant impact on the throughput capacity of the production line. To describe such systems, a new class of production line models (PDE-model) has been introduced. To describe the behavior of the flow parameters of the production line, a production line model containing partial differential equations (PDE model) was used. The PDE-model of the production line is built in the article, the flow parameters of which depend on the value of utilization rate of the technological equipment for each operation. Findings. The authors obtained the optimal control of the flow parameters of the production line, which is based on the algorithm for changing the utilization rate of the technological equipment of the production line. The single-shift working time pattern is considered as a basic regulatory treatment of the production line operation. To simulate the work of technological equipment after the shift, the generalized Dirac function was used. Originality consists in the development of a method for designing control systems for the parameters of the production line of enterprises with a straight flow method of organizing production based on the PDE-model of the control object. The authors proposed a method for constructing an optimal control of the parameters of the production line through the control of the utilization rate of the technological equipment. When designing a control system, the production line is represented by a dynamic system with distributed flow parameters. Practical value. The proposed method for designing a control system for the flow parameters of a production line can be used as the basis for designing highly efficient production flow control systems for enterprises manufacturing semiconductor products of the automobile industry.


Keywords


conveyor; production line; PDE-model of production; production control systems; unfinished production; mass production

References


Azarenkov, N. A., Pihnastyi, O. M., & Khodusov, V. D. (2014). Kinetic theory of fluctuations of the parameters of a production line. Reports of the National Academy of Sciences of Ukraine, (12), 36-43. doi: 10.15407/dopovidi2014.12.036 (in Russian)

Vlasov, V. A., Tikhomirov, I. A., & Loktev, I. I. (2006). Modelirovanie tekhnologicheskikh protsessov izgotovleniya promyshlennoy produktsii. Tomsk: Izdatelstvo GTPU. (in Russian)

Dykhta, V. A., & Samsonyuk, O. N. (2000). Optimalnoe impulsnoe upravlenie s prilozheniyami. Moscow: Fizmatlit. (in Russian)

Ivanenko, D. D., & Sokolov, A. A. (1951). Klassicheskaya teoriya polya (novye problemy). Moscow: Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoy literatury. (in Russian)

Korobetskiy, Y. P., & Ramazanov, S. K. (2003). Imitatsionnye modeli v gibkikh sistemakh. Lugansk: Izdatelstvo VNU im. V. Dalya. (in Russian)

Mikhaylov, V. S. (1988). Teoriya upravleniya. Kiev: Vyshcha shkola. (in Russian)

Pihnastyi, O. M. (2006). Zadacha optimalnogo operativnogo upravleniya makroparametrami proizvodstvennoy sistemy s massovym vypuskom produktsii. Reports of the National Academy of Sciences of Ukraine, (5), 79-85. (in Russian)

Pihnastyi, O. M., & Khodusov,V. D. (2009). Raschet proizvodstvennogo tsikla s primeneniem statisticheskoy teorii proizvodstvenno-tekhnicheskikh sistem. Reports of the National Academy of Sciences of Ukraine, (12), 38-44. (in Russian)

Pinxten, J. V., Waqas, U., Geilen, M., Basten, T., & Somers, L. (2017). Online Scheduling of 2-Re-entrant Flexible Manufacturing Systems. ACM Transactions on Embedded Computing Systems, 16(5s), 1-20. doi: 10.1145/3126551 (in English)

Ancona, F., Cesaroni, A., Coclite, G. M., & Garavello, M. (2018). On the Optimization of Conservation Law Models at a Junction with Inflow and Flow Distribution Controls. SIAM Journal on Control and Optimization, 56(5), 3370-3403. doi: 10.1137/18m1176233 (in English)

Kaihara, T., Katsumura, Y., Suginishi, Y., & Kadar, B. (2017). Simulation model study for manufacturing effectiveness evaluation in crowdsourced manufacturing. CIRP Annals, 66(1), 445-448. doi: 10.1016/j.cirp.2017.04.094 (in English)

Falco de, M., Mastrandrea, N., Mansoor, W., & Rarità, L. (2018). Situation Awareness and Environmental Factors: The EVO Oil Production. In: Р. Daniele, & L. Scrimali (eds), New Trends in Emerging Complex Real Life Problems (рр. 209-217). Cham: Springer. doi: 10.1007/978-3-030-00473-6_23 (in English)

Tiacci, L. (2015). Simultaneous balancing and buffer allocation decisions for the design of mixed-model assembly lines with parallel workstations and stochastic task times. International Journal of Production Economics, 162, 201-215. doi: 10.1016/j.ijpe.2015.01.022 (in English)

Kuck, M., Broda, E., Freitag, M., Hildebrandt, T., & Frazzon, E. M. (2017, December). Towards adaptive simulation-based optimization to select individual dispatching rules for production control. 2017 Winter Simulation Conference (WSC). Las Vegas. doi: 10.1109/wsc.2017.8248096 (in English)


GOST Style Citations


  1. Азаренков, Н. А. Кинетическая теория колебаний параметров поточной линии / Н. А. Азаренков, О. М. Пигнастый, В. Д. Ходусов // Доп. Нац. акад. наук України. – 2014. – № 12. – С. 36–43. doi: 10.15407/dopovidi2014.12.036
  2. Власов, В. А. Моделирование технологических процессов изготовления промышленной продукции / В. А. Власов, И. А. Тихомиров, И. И. Локтев. – Томск : Изд-во ГТПУ, 2006. – 300 с.
  3. Дыхта, В. А. Оптимальное импульсное управление с приложениями / В. А. Дыхта, О. Н. Самсонюк. – Москва : Физматлит, 2000. – 255 с.
  4. Иваненко, Д. Д. Классическая теория поля (новые проблемы) / Д. Д. Иваненко, А. А. Соколов. – Москва ; Ленинград : Гос. изд-во технико-теорет. лит., 1951. – 480 с.
  5. Коробецкий, Ю. П. Имитационные модели в гибких системах / Ю. П. Коробецкий, С. К. Рамазанов. – Луганск : Изд-во ВНУ им. В. Даля, 2003. – 280 с.
  6. Михайлов, В. С. Теория управления / В. С. Михайлов. – Киев : Выща школа, 1988. – 312 с.
  7. Пигнастый, О. М. Задача оптимального оперативного управления макропараметрами производственной системы с массовым выпуском продукции / О. М. Пигнастый // Доп. Нац. акад. наук України. – 2006. – № 5. – С. 79–85.
  8. Пигнастый, О. М. Расчет производственного цикла с применением статистической теории производственно-технических систем / О. М. Пигнастый, В. Д. Ходусов // Доп. Нац. акад. наук України. – 2009. – № 12. – С. 38–44.
  9. Online scheduling of 2re-entrant flexible manufacturing systems / J. Pinxten, U. Waqas, M. Geilen, A. Basten, L. Somers // ACM Transactions on Embedded Computing Systems. – 2017. – Vol. 16. – Iss. 5s. – P. 1–20. doi: 10.1145/3126551
  10. On the Optimization of Conservation Law Models at a Junction with Inflow and Flow Distribution Controls / F. Ancona, A. Cesaroni, G. Coclite, M. Garavello // SIAM Journal on Control and Optimization. – 2018. – Vol. 56. – Iss. 5. – P. 3370–3403. doi: 10.1137/18M1176233
  11. Simulation model study for manufacturing effectiveness evaluation in crowdsourced manufacturing / T. Kaihara, Y. Katsumura, Y. Suginishi, B. Kádár // CIRP Annals. – 2017. – Vol. 66. – Iss. 1. – P. 445–448. doi: 10.1016/j.cirp.2017.04.094
  12. Situation Awareness and Environmental Factors: The EVO Oil Production / М. de Falco, N. Mastrandrea, W. Mansoor, L. Rarità // New Trends in Emerging Complex Real Life Problems / Р. Daniele, L. Scrimali (eds). – Cham : Springer, 2018. – P. 209–217. doi: 10.1007/978-3-030-00473-6_23
  13. Tiacci, L. Simultaneous balancing and buffer allocation decisions for the design of mixed-model assembly lines with parallel workstations and stochastic task times / L. Tiacci // International Journal of Production Economics. – 2015. – Vol. 162. – P. 201–215. doi: 10.1016/j.ijpe.2015.01.022
  14. Towards adaptive simulation-based optimization to select individual dispatching rules for production control / M. Kück, E. Broda, M. Freitag, T. Hildebrandt, E. M. Frazzon // 2017 Winter Simulation Conference (WSC). – Las Vegas, NV, USA, 2017. – P. 3852–3863. doi: 10.1109/WSC.2017.8248096




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)