DOI: https://doi.org/10.15802/stp2019/159499

ANALYTICAL DETERMINATION OF THE REDUCED ROTATIONAL RESISTANCE COEFFICIENT OF THE CONSTRUCTION MACHINE SLEWING GEAR

L. M. Bondarenko, O. P. Posmityukha, K. T. Hlavatskyi

Abstract


Purpose. Designing new models of construction machines is closely related to the development of slewing gear, and that, in turn, has a drive whose power and dimensions depend on the rotational resistance and the reduced friction coefficient in the units. The absence of analytical dependencies for determining the reduced coefficient of friction for the rotation of construction machines, first, restricts the designer's ability to select materials, and secondly, does not allow the adoption of optimal design solutions. Therefore, the purpose of the article is to find analytical solutions to determine the rotational resistance in the slewing gear of construction machines, which allows projecting more advanced gears and machines in general. Existing techniques are based on empirical dependencies and experimental coefficients that reduce the accuracy of calculations, increase the size and cost of work. It is proposed to improve the accuracy and simplify the process of determining the rotational resistance and the magnitude of the reduced rotational resistance coefficient of the building tower cranes. Methodology. The set objectives can be achieved by means of analytical dependencies for determination of rolling friction coefficients over linear and point contacts. This will enables to find the more accurate value of the resistance coefficient, and the constructor during the calculations to take targeted measures to reduce it, using the mechanical constants of materials of the units and their geometric parameters. The calculation is based on Hertz contact deformation theory and the body point plane motion theory. Findings. The obtained dependencies will allow analytically to find the resistance of rolling resistance of rollers in construction machines with fixed and rotating pillars, with circular rotary devices, as well as in ball and roller slewing rings. The calculated values of the rotational resistance coefficients for some types of mechanisms give similar values with those recommended, while for others they significantly differ and require their refinement in reference values. Originality of the work consists in the use of analytical dependences for determining the reduced coefficient of the rotational resistance over linear and point contacts using Hertz contact deformation theory and Tabor partial analytic dependencies theory. Practical value. The obtained dependencies will allow to design new types of slewing gear units of the construction machines and to reveal the additional rotational resistances.


Keywords


construction machine; resistance; rotation; turn; slewing ring; rail; rolling friction

References


Bondarenko, L. M., Dovbnia, M. P., & Loveikin, V. S. (2002). Deformatsiini opory v mashynakh. Dnipropetrovsk: Dnipro-VAL. (in Ukrainian)

Bondarenko, L. M., Raksha, S. V., & Brylova, M. H. (2005). Utochnennia rozrakhunkovoi skhemy navantazhennia hrupy til kochennia. Pidiomno-transportna tekhnika, 1, 47-52. (in Ukrainian)

Bohomaz, V. M., Bondarenko, L. M., Bohomaz, O. V., & Brylyova, M. G. (2018). Effect of resistance to rolling on the dynamics of the lifting mechanisms of the transporting mac. Science and Transport Progress. 2(74), 124-132. doi: 10.15802/stp2018/130441 (in Russian)

Aleksandrov, M. P., Kolоbov, L. N., Lobov, M. A. Nikolskaya, T. A., & Polkovnikov, V. S. (1986). Gruzopodemnye mashiny: Uchebnik dlya vuzov. Moscow: Mashinostroenie. (in Russian)

Dzhonson, K. (1989). Mekhanika kontaktnogo vzaimodeystviya. Moscow: Mir. (in Russian)

Ivanov, M. N., & Ivanov, V. N. (1975). Detali mashin. Kursovoe proektirovanie. Moscow: Vysshaya shkola. (in Russian)

Kovalskiy, B. S. (2000). Voprosy peredvizheniya mostovykh kranov. Lugansk. (in Russian)

Kozhevnikov, S. N. (1969). Teoriya mekhanizmov i mashin. Moscow: Mashinostroenie. (in Russian)

Pisarenko, G. S., Yakovlev, A. P., & Matveev, V. V. (1988). Spravochnik po soprotivleniyu materialov. Kiev: Naukova dumka. (in Russian)

Ivanchenko, F. K., Bondarev, V. S., Kolesnik, N. P., & Barabanov, V. Y. (1975). Raschety gruzopodemnykh i transportiruyushchikh mashin. Kiev: Vishcha shkola. (in Russian)

Aleksandrov, M. P., Gokhberg, M. M., Kovin, A. A., & Gokhberg, M. M. (Ed). (1988). Spravochnik pokranam (Vol. 1-2). Leningrad: Mashinostroenie. (in Russian)

Khramtsov, A. M., Bohomaz, V. M., Shcheka, I. M., & Kramar, I. Y. (2017). Tekhnolohichni protsesy pid chas vidnovlennia oporno-obertalnoho prystroiu budivelnykh kraniv. The Problems and Prospects of railway transport: 77th International scientific and practical conference. Dnipro: Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan. (in Ukrainian)

Akhavian, R., & Behzadan, A. H. (2012). Remote Monitoring of Dynamic Construction Processes Using Automated Equipment Tracking. Construction Research Congress 2012. West Lafayette, Indiana, United States. doi: 10.1061/9780784412329.137 (in English)

Waris, M., Shahir Liew, M., Khamidi, M. F., & Idrus, A. (2014). Criteria for the selection of sustainable onsite construction equipment. International Journal of Sustainable Built Environment, 3(1), 96-110. doi: 10.1016/j.ijsbe.2014.06.002 (in English)

Eldredge, K. R., & Tabor, D. (1958). The mechanism of rolling friction. I. The plastic range. II. The elastic range. Wear, 1(5), 452. doi: 10.1016/0043-1648(58)90178-9 (in English)

Holt, G. D., & Edwards, D. (2015). Analysis of interrelationships among excavator productivity modifying factors. International Journal of Productivity and Performance Management, 64(6), 853-869. doi: 10.1108/ijppm-02-2014-0026 (in English)

Pries, F., & Janszen, F. (1995). Innovation in the construction industry: the dominant role of the environment. Construction Management and Economics, 13(1), 43-51. doi: 10.1080/01446199500000006 (in English)

Siemensmeyer, H., & Aaronson, S. F. (1983). Bearings for Large Capacity Crane Applications. SAE Technical Paper Series. doi: 10.4271/831373 (in English)

Su, X., Pan, J., & Grinter, M. (2015). Improving Construction Equipment Operation Safety from a Human-centered Perspective. Procedia Engineering, 118, 290-295. doi: 10.1016/j.proeng.2015.08.429 (in English)

Takahashi, H., & Omory, T. (1985). Measurement of the Rolling Element Load Distribution in Turntable Bearings. SAE Technical Paper Series. doi: 10.4271/850762 (in English)

Yip, H., Fan, H., & Chiang, Y. (2014). Predicting the maintenance cost of construction equipment: Comparison between general regression neural network and Box–Jenkins time series models. Automation in Construction, 38, 30-38. doi: 10.1016/j.autcon.2013.10.024 (in English)


GOST Style Citations


  1. Бондаренко, Л. М. Деформаційні опори в машинах / Л. М. Бондаренко, М. П. Довбня, В. С. Ловєйкін. – Дніпропетровськ : Дніпро-VAL, 2002. – 200 с.
  2. Бондаренко, Л. М. Уточнення розрахункової схеми навантаження групи тіл кочення / Л. М. Бондаренко, С. В. Ракша, М. Г. Брильова // Підйомно-транспортна техніка. – 2005. – № 1. – С. 47–52.
  3. Влияние сопротивлений качению на динамику механизмов подъема транспортирующих машин / В. М. Богомаз, Л. Н. Бондаренко, О. В. Богомаз, М. Г. Брылева // Наука та прогрес транспорту. – 2018. – № 2 (74). – С. 124–132. doi: 10.15802/stp2018/130441
  4. Грузоподъёмные машины : учебник для вузов / М. П. Александров, Л. Н. Колобов, М. А. Лобов [и др.]. – Москва : Машиностроение, 1986. – 400 с.
  5. Джонсон, К. Механика контактного взаимодействия / К. Джонсон. – Москва : Мир, 1989. – 510 с.
  6. Иванов, М. Н. Детали машин. Курсовое проектирование / М. Н. Иванов, В. Н. Иванов. – Москва : Высш. школа, 1975. – 551 с.
  7. Ковальський, Б. С. Вопросы передвижения мостовых кранов / Б. С. Ковальський ; Восточноукр. нац. ун-т. – Луганск : [б. и.], 2000. – 63 с.
  8. Кожевников, С. Н. Теория механизмов и машин / С. Н. Кожевников. – Москва : Машиностроение, 1969. – 584 с.
  9. Писаренко, Г. С. Справочник по сопротивлению материалов / Г. С. Писаренко, А. П. Яковлев, В. В. Матвеев. – Киев : Наук. думка, 1988. – 736 с.
  10. Расчеты грузоподъёмных и транспортирующих машин / Ф. К. Иванченко, В. С. Бондарев, Н. Т. Колесник, В. Я. Барабанов. – Киев : Выща школа, 1975. – 520 с.
  11. Справочник по кранам : в 2 т. / М. П. Александров, М. М. Гохберг, А. А. Ковин [и др.] ; под общ. ред. М. М. Гохберга. – Ленинград : Машиностроение, 1988. – Т. 2. – 559 с.
  12. Технологічні процеси під час відновлення опорно-обертального пристрою будівельних кранів / А. М. Храмцов, В. М. Богомаз, І. М. Щека, І. Є. Крамар // Проблеми та перспективи розвитку залізничного транспорту : тези доп. 77 Міжнар. наук.-практ. конф. (Дніпро, 11–12 трав. 2017 р.) / Дніпропетр. нац. ун-т залізн. трансп. ім. акад. В. Лазаряна. – Дніпро, 2017. – С. 315–316.
  13. Akhavian, R. Remote Monitoring of Dynamic Construction Processes Using Automated Equipment Tracking / R. Akhavian, А. Behzadan // Construction Research Congress (May 21–23, 2012). – West Lafayette, Indiana, United States, 2012. – Р. 1360–1369. doi: 10.1061/9780784412329.137
  14. Criteria for the selection of sustainable onsite construction equipment / М. Waris, M. Shahir Liew, M. F. Khamidi, А. Idrus // International Journal of Sustainable Built Environment. – 2014. – Vol. 3. – Іss. 1. – Р. 96–110. doi: 10.1016/j.ijsbe.2014.06.002
  15. Eldredge, K. R. The mechanism of roiling friction. I. The plastic range. II. The elastic range / K. R. Eldredge, D. Tabor // Wear. – 1958. – Vol. 1. – Іss. 5. – Р. 452. doi: 10.1016/0043-1648(58)90178-9
  16. Holt, G. Analysis of interrelationships among excavator productivity modifying factors / G. Holt, D. Edwards // International Journal of Productivity and Performance Management. – 2015. – Vol. 64. – Іss. 6. – Р. 853–869. doi: 10.1108/IJPPM-02-2014-0026
  17. Pries, F. Innovation in the construction industry: the dominant role of the environment / F. Pries, F. Janszen // Construction Management and Economics. – 1995. – Vol. 13. – Іss. 1. – Р. 43–51. doi : 10.1080/01446199500000006
  18. Slemenmeyer, H. Bearings for large capacity crane applications / H. Slemenmeyer, S. Aaronson // SAE Technical Paper Series. – 1983. doi: 10.4271/831373
  19. Su, X. Improving Construction Equipment Operation Safety from a Human-centered Perspective / Х. Su, J. Pan, М. Grinter // Procedia Engineering. – 2015. – Vol. 118. – Р. 290–295. doi: 10.1016/j.proeng.2015.08.429
  20. Takahashi, H. Measurement of the rolling element load distribution in turntable bearings / H. Takahashi, H. Omary // SAE Technical Paper Series. – 1985. doi: 10.4271/850762
  21. Yip, H. Predicting the maintenance cost of construction equipment: Comparison between general regression neural network and Box–Jenkins time series models / Н. Yip, H. Fan, Y. Chiang // Automation in Construction. – 2014. – Vol. 38. – Р. 30–38. doi: 10.1016/j.autcon.2013.10.024




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)