DOI: https://doi.org/10.15802/stp2019/165853

RATIONAL DESIGN OF SHORT-SPAN INDUSTRIAL BUILDING ROOF FOR RECONSTRUCTION CONDITIONS

N. G. Kruhlikova, D. О. Bannikov

Abstract


Purpose. Recently, the demand for reuse of industrial buildings that have not been in operation for some time has been increasing in Ukraine. Herewith, quite often the design of their roof requires the complete replacement and renovation by using modern roofing materials to meet the requirements of new government standards. Therefore, the choice and justification of the rational design of steel roof on the example of a short-span industrial building (18-24 m span), which is planned to be returned to exploitation after idle time, is the main goal of this publication. The object of the analysis is an unheated building equipped with bridge cranes of a small capacity (up to 10 tons). Me-thodology. To achieve this purpose, the comparison of structural variants of a roof steel collar tie was performed. Such variants include two types of collar tie cross-section –a lattice truss and a solid I-girder. The first type was analyzed for four possible types of section of elements – double angles, a roll-welded square profile, an electric-welded round tube and a rolled round tube. The second type was analyzed for two possible types of section – rolled I-section made of normal strength steel and fabricated sections of thin-gage high-strength steel. The design variants were compared on the basis of a numerical analysis of their work using the finite element method based on the software complex SCAD for Windows. Findings. According to the research results it should be stated that for the conditions of the city of Dnipro the most cost-effective variant of the steel collar tie cross section for the short-span industrial building is the truss made of electric-welded round tubes. Also the construction of collar tie made of roll-welded square profiles or fabricated section of thin-gage high-strength steel is considered quite effective. Originality. The research presented in the publication allows estimating the possibility and economic efficiency of usage for various types of cross-sections for the collar tie of a steel non-insulated roof of the industrial building for the reconstruction conditions in the Dnipro-city. Practical value. A practical estimation of mass and cost parameters for steel collar ties of various types has been carried out, and the methodology for conducting such estimation has been substantiated.


Keywords


industrial building; collar tie; girder; truss; software complex SCAD for Windows; finite element method

Full Text:

PDF

References


Electrically welded steel line-weld tubes. Range, 17 GOST 10704-91 (2007). (in Russian)

Hot-rolled steel I-beam with parallel flange edges. Dimensions, 6 GOST 26020-83 (1984). (in Russian)

Steel bent closed welded square and rectangular section for building. Specifications, 15 GOST 30245-2003 (2003). (in Russian)

Truby stalnye besshovnye goryachedeformirovannye. Sortament, 10 GOST 8732-78* (1989). (in Russian)

Systema nadiinosti ta bezpeky v budivnytstvi. Navantazhennia i vplyvy. Normy proektuvannia, 70 DBN В.1.2-2:2006 (2007). (in Ukrainian)

Pokryttia budivel i sporud, 53 DBN B.2.6-220:2017 (2017). (in Ukrainian)

Stalevi konstruktsii. Normy proektuvannia, 205 DBN В.2.6-198:2014 (2014). (in Ukrainian)

Kutyky stalevi hariachekatani rivnopolychni. Sortament, 16 DSTU 2251-93 (GОSТ 8509-93) (1993). (in Ukrainian)

Bannikov, D. O. (2017). Otsinka praktychnoi zbizhnosti rezultativ analizu plastynchastykh modelei v metodi skinchenykh elementiv. Novi tekhnolohii v budivnytstvi, 1, 26-31. (in Ukranian)

Buga, P. G. (2013). Grazhdanskie, promyshlennye i selskokhozyaystvennye zdaniya. Moscow: Kniga po trebovaniyu. (in Russian)

Karpilovskiy, V. S., Kriksunov, E. Z., Malyarenko, A. A., Fialko, S. Y., Perelmuter, A. V., & Perelmuter, M. A. (2015). SCAD Office. Version 21. Software complex SCAD++. Moscow: SCAD Soft. (in Russian)

Bofang, Z. (2018). The Finite Element Method: Fundamentals and Applications in Civil, Hydraulic, Mechanical and Aeronautical Engineering. Singapore: John Wiley & Sons Singapore Pte. Ltd. doi: 10.1002/9781119107323 (in English)

Johnson, R. P. (2018). Composite Structures of Steel and Concrete: Beams, Slabs, Columns and Frames for Buildings. Hoboken: John Wiley & Sons, Inc. doi: 10.1002/9781119401353 (in English)

Singiresu, S. R. (2018). The Finite Element Method in Engineering (6th ed.). Oxford: Butterworth-Heinemann. doi: 10.1016/c2016-0-01493-6 (in English)

Shames, I. H., & Dym, C. L. (2017). Energy and Finite Element Methods in Structural Mechanics. New York: Routledge. doi: 10.1201/9780203757567 (in English)


GOST Style Citations


  1. ГОСТ 10704-91. Трубы стальные электросварные прямошовные. Сортамент. – Москва : Стандартинформ, 2007. – 17 с.
  2. ГОСТ 26020-83. Двутавры стальные горячекатаные с параллельными гранями полок. Сортамент. – Москва : Изд-во стандартов, 1984. – 6 с.
  3. ГОСТ 30245-2003. Профили стальные гнутые замкнутые сварные квадратные и прямоугольные для строительных конструкций. Технические условия. – Москва : Изд-во стандартов, 2003. – 15 с.
  4. ГОСТ 8732-78*. Трубы стальные бесшовные горячедеформированные. Сортамент. – Москва : Изд-во стандартов, 1989. – 10 с.
  5. ДБН В.1.2-2-2006 (зі змінами). Система надійності та безпеки в будівництві. Навантаження і впливи. Норми проектування. – Київ : Держбуд, 2007. – 70 с.
  6. ДБН В.2.6-220:2017. Покриття будівель і споруд. – Київ : Мінрегіон України, 2017. – 53 с.
  7. ДБН В.2.6-198:2014. Сталеві конструкції. Норми проектування. – Київ : Мінрегіон України, 2014. – 205 с.
  8. ДСТУ 2251-93 (ГОСТ 8509-93). Кутики сталеві гарячекатані рівнополичні. Сортамент. – Київ : Держстандарт України, 1993. – 16 с.
  9. Банніков, Д. О. Оцінка практичної збіжності результатів аналізу пластинчастих моделей в методі скінчених елементів / Д. О. Банніков // Нові технології в будівництві. – 2017. – № 1. – С. 26–31.
  10. Буга, П. Г. Гражданские, промышленные и сельскохозяйственные здания / П. Г. Буга. – Москва : Книга по требованию, 2013. – 349 с.
  11. SCAD Office. Версия 21. Вычислительный комплекс SCAD++ / В. С. Карпиловский, Э. З. Криксунов, А. А. Маляренко, С. Ю. Фиалко. А. В. Перельмутер, М. А. Перельмутер. – Москва : СКАД СОФТ, 2015. – 850 с.
  12. Bofang, Z. The Finite Element Method: Fundamentals and Applications in Civil, Hydraulic, Mechanical and Aeronautical Engineering / Zhu Bofang. – Singapore : John Wiley & Sons Singapore Pte. Ltd., 2018. – 843 p. doi: 10.1002/9781119107323
  13. Johnson, R. P. Composite Structures of Steel and Concrete: Beams, Slabs, Columns and Frames for Buildings / R. P. Johnson. – Hoboken : John Wiley & Sons, Inc., 2018. – 265 p. doi: 10.1002/9781119401353
  14. Singiresu, S. R. The Finite Element Method in Engineering / S. R. Singiresu. – 6th ed. – Oxford : Butterworth-Heinemann, 2018. – 782 p. doi: 10.1016/c2016-0-01493-6
  15. Shames, I. H. Energy and Finite Element Methods in Structural Mechanics / I. H. Shames, C. L. Dym. – New York : Routledge, 2017. – 776 p. doi: 10.1201/9780203757567




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)