DOI: https://doi.org/10.15802/stp2019/165874

FIELD TESTS OF GLUED INSULATED RAIL JOINTS WITH USAGE OF SPECIAL PLASTIC AND STEEL FISHPLATES

A. Nemeth, S. Fischer

Abstract


Purpose. The aim was to compare behavior of polymer-composite fishplated and control steel fishplated (type GTI and MTH-P) glued insulated rail joints in railway track. Methodology. After laboratory tests (shear tests of glue materials, 3-point-bending tests, axial pull tests), as well as field inspections, trial polymer-composite and control (steel) fishplated glued insulated rail joints were built into railway tracks with (almost) the same border conditions (rail profiles, cross section parameters, track condition, etc.). The authors summarize in this paper the results of field tests related to polymer-composite, as well as control (steel) fishplated glued insulated rail joints between 2015 and 2018 considering measured data of track geometry recording car and straightness tests. Findings. The investigation and diagnostics of experimental (fiber-glass reinforced fishplate) and control (steel fishplate) rail joints (straightness tests, track geometry recording car measurements) are in progress. Originality. The goal of the research is to investigate the application of this new type of glued insulated rail joint where the fishplates are manufactured at high pressure, regulated temperature, glass-fiber reinforced polymer composite plastic material. The usage of this kind of glued insulated rail joints is able to eliminate the electric fishplate circuit and early fatigue deflection and it can ensure the isolation of rails’ ends from each other by aspect of electric conductivity. Practical value. The polymer-composite fishplated glued-insulated rail joints and control steel fishplated rail joints were built into the No. 1 main railway line (Kelenföld-Hegyeshalom) in Hungary at three different railway stations. The accurate time could not be determined when the polymer-composite fishplated glued-insulated rail joints reach the end of their lifetime as the result of previous research. In this article the investigation of deterioration process of glued-insulated rail joints is demonstrated.


Keywords


polymer-composite; fishplate; rail joint; railway; field test

Full Text:

PDF

References


Kurhan, D. M. (2015). To the solution of problems about the railways calculation for strength taking into account unequal elasticity of the subrail base. Science and Transport Progress, 1(55), 90-99. doi: 10.15802/stp2015/38250 (in English)

Ciloglu, K., Frye, P. C., Almes, S., & Shue, S. (2014). Advances in Bonded Insulated Rail Joints to Improve Product Performance, 2014 Joint Rail Conference. Colorado Springs. Retrieved from http://clc.am/k6j0lg doi: 10.1115/jrc2014-3746 (in English)

Ágh, C. (2018). A new arrangement of accelerometers on track inspection car FMK-007 for evaluating derailment safety, Track Maintenance Machines in Theory and Practice, SETRAS 2018. Žilina. (in English)

Ágh, C. (2012). Egyenértékű kúposság mérése Magyarországon: Pálya és jármű kapcsolata – futási instabilitás. Sínek világa, 54(6), 10-13. (in Hungarian)

Ágh, C. (2018). Vágánygeometriai irány- és fekszinthibák valós nagyságának értékelése húrmérési eredmények alapján. Közlekedéstudományi szemle, 68(5), 46-55. (in Hungarian)

Ágh, C. (2017). Vasúti kerékpár futási instabilitása a pályadiagnosztika szemszögéből. Sínek világa, 59(6), 17-20. (in Hungarian)

Albakri, M. I. (2016). Modeling and experimental analysis of piezoelectric augmented systems for structural health and stress monitoring applications. (Dissertation submitted for the degree of Doctor of Philosophy in Engineering Mechanics). The Virginia Polytechnic Institе, Blacksburg. (in English)

Plaut, R. H., Lohse-Busch, H., Eckstein, A., Lambrecht, S., & Dillard, D. A. (2007). Analysis of tapered, adhesively bonded, insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 221(2), 195-204. doi: 10.1243/0954409jrrt107 (in English)

Askarinejad, H., Dhanasekar, M., & Cole, C. (2012). Assessing the Effects of Track Input to the Response of Insulated Rail Joints Using Field Experiments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 227(2), 176-187. doi: 10.1177/0954409712458496 (in English)

Askarinejad, Н., & Dhanasekar, М. (2015). Minimising the Failure of Rail Joints through Managing the Localised Condition of Track. Railway Engineering 2015. Edinburgh. Retrieved from https://clck.ru/FNZKS (in English)

Ataei, S., Mohammadzadeh, S., & Miri, A. (2016). Dynamic Forces at Square and Inclined Rail Joints: Field Experiments. Journal of Transportation Engineering, 142(9). Retrieved from http://clc.am/Jx0xKw doi: 10.1061/(asce)te.1943-5436.0000866 (in English)

El-sayed, H. M., Lotfy, M., El-din Zohny, H. N., & Riad, H. S. (2018). A three dimensional finite element analysis of insulated rail joints deterioration. Engineering Failure Analysis, 91, 201-215. doi: 10.1016/j.engfailanal.2018.04.042 (in English)

Bandula-Heva, T. M., Dhanasekar, M., & Boyd, P. (2012). Experimental Investigation of Wheel/Rail Rolling Contact at Railhead Edge. Experimental Mechanics, 53(6), 943-957. doi: 10.1007/s11340-012-9701-6 (in English)

Bongiorno, J., & Mariscotti, A. (2018). Track insulation verification and measurement. MATEC Web of Conferences, 180. Retrieved from http://clc.am/L4nsTg doi: 10.1051/matecconf/201818001008 (in English)

Mechanical requirements for joints in running rails: WG 18 / DG 11. (2010). Retrieved from: https://mail.google.com/mail/u/0/#inbox/QgrcJHsHlltHGdfHRzQFTtBmPxKvlzMKthg?projector=1&messagePartId=0.6 (in English)

Chen, Y. C., & Kuang, J. H. (2002). Contact stress variations near the insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 216(4), 265-273. doi: 10.1243/095440902321029217 (in English)

Cheng, Y., Liu, Z., & Huang, K. (2017). Transient Analysis of Electric Arc Burning at Insulated Rail Joints in High-Speed Railway Stations Based on State-Space Modeling. IEEE Transactions on Transportation Electrification, 3(3), 750-761. doi: 10.1109/tte.2017.2713100 (in English)

Dhanasekar, M., & Bayissa, W. (2011). Performance of square and inclined insulated rail joints based on field strain measurements. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 226(2), 140-154. doi: 10.1177/0954409711415898 (in English)

Dhanasekar, М. (2015). Research outcomes for improved management of insulated rail joints. In Forde, M. C. (Ed.), Railway Engineering (pp. 1-14). Edingburgh, United Kingdom. (in English)

El-khateeb, L. (2017). Defect-based Condition Assessment Model of Railway Infrastructure. (A Thesis in The Department of Building, Civil and Environmental Engineering). Concordia University, Montreal. (in English)

Elshukri, F. A. (2016). An Experimental Investigation and Improvement of Insulated Rail Joints (IRJs) еnd Post Performance. (A thesis submitted for the degree of Doctor of Philosophy). The University of Sheffield, Sheffield. (in English)

Elshukri, F. A., & Lewis, R. (2016). An Experimental Investigation and Improvement of Insulated Rail Joints. Tribology in Industry, 38(1), 121-126. (in English)

Elshukri, F. A., & Lewis, R. (2015). An Experimental Investigation and Improvement of Insulated Rail Joints, 14th International Serbian Conference on Tribology, Serbiatrib'15. Belgrade. (in English)

Oregui, M., Molodova, M., Núñez, A., Dollevoet, R., & Li, Z. (2015). Experimental Investigation Into the Condition of Insulated Rail Joints by Impact Excitation. Experimental Mechanics, 55(9), 1597-1612. doi: 10.1007/s11340-015-0048-7 (in English)

Boyd, Р., Mandal, N., Bandula, Т., Zong, N., & Dhanasekar, М. (2012). Experimental Investigation into the Failure Behaviour of Insulated Rail Joints, Conference on Railway Engineering, CORE. Brisbane. Retrieved from https://clck.ru/FMM5c (in English)

Beaty, P., Temple, B., Marshall, M. B., & Lewis, R. (2016). Experimental modelling of lipping in insulated rail joints and investigation of rail head material improvements. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(4), 1375-1387. doi: 10.1177/0954409715600740 (in English)

Fischer, Sz., & Németh, A. (2017). Investigation of polymer-composite fishplated glued insulated rail joints in laboratory, as well as in field tests for dynamic effects: Research Report. Győr: Universitas-Győr Nonprofit Ltd. (in Hungarian)

Lewis, S. R., Lewis, R., Goodwin, P. S., Fretwell-Smith, S., Fletcher, D. I., Murray, K., & Jaiswal, J. (2017). Full-scale testing of laser clad railway track; Case study – Testing for wear, bend fatigue and insulated block joint lipping integrity. Wear, 376-377, 1930-1937. doi: 10.1016/j.wear.2017.02.023 (in English)

Reffye, J. de, & Antoni, М. (2016). Health monitoring on line of the impedance of the glued isolating joints to improve the availability of the French railway lines, 20e Congrès de maîtrise des risques et de sûreté de fonctionnement. Saint-Malo. Retrieved from https://clck.ru/FLzVH (in English)

Himebaugh, A. K., Plaut, R. H., & Dillard, D. A. (2008). Finite element analysis of bonded insulated rail joints. International Journal of Adhesion and Adhesives, 28(3), 142-150. doi: 10.1016/j.ijadhadh.2007.09.003 (in English)

Horvát, F. (2012). Application of polymer-composite fishplates for glued insulated rail joints: Research Report. Győr: Széchenyi István Egyetem. (in Hungarian)

Goto, K., Minoura, S., Watanabe, T., Ngamkhanong, C., & Kaewunruen, S. (2018). Impact Load Response of PC Rail Joint Sleeper under a Passing Train. Journal of Physics: Conference Series, 1106. Retrieved from https://clck.ru/FPHtF doi: 10.1088/1742-6596/1106/1/012008 (in English)

Kabo, E., Nielsen, J. C. O., & Ekberg, A. (2006). Prediction of dynamic train–track interaction and subsequent material deterioration in the presence of insulated rail joints. Vehicle System Dynamics, 44(sup1), 718-729. doi: 10.1080/00423110600885715 (in English)

Kaewunruen, S., & Chiengson, C. (2018). Railway track inspection and maintenance priorities due to dynamic coupling effects of dipped rails and differential track settlements. Engineering Failure Analysis, 93, 157-171. doi: 10.1016/j.engfailanal.2018.07.009 (in English)

Kaewunruen, S., Aikawa, A., & Remennikov, A. M. (2017). Vibration Attenuation at Rail Joints through under Sleeper Pads. Procedia Engineering, 189, 193-198. doi: 10.1016/j.proeng.2017.05.031 (in English)

Kurhan, D. (2016). Determination of Load for Quasi-static Calculations of Railway Track Stress-strain State. Acta Technica Jaurinensis, 9(1), 83-96. doi: 10.14513/actatechjaur.v9.n1.400 (in English)

Mandal, N. K., & Peach, В. (2010). An Engineering Analysis of Insulated Rail Joints: A General Perspective. International Journal of Engineering Science and Technology, 2(8), 3964-3988. (in English)

Mandal, N. K. (2018). Stress Analysis оf Joint Bars оf Insulated Rail Joints Due to Wheel/Rail Contact Loadings, the 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, CM2018. Delft. (in English)

Mayers, A. (2017). The effect of heavy haul train speed on insulated rail joint bar strains. Australian Journal of Structural Engineering, 18(3), 148-159. doi: 10.1080/13287982.2017.1363977 (in English)

Rathod, C., Wexler, D., Chandra, T., & Li, H. (2012). Microstructural Characterisation of Railhead Damage in Insulated Rail Joints. Materials Science Forum, 706-709, 2937-2942. doi: 10.4028/www.scientific.net/msf.706-709.2937 (in English)

Oregui, M., Li, S., Núñez, A., Li, Z., Carroll, R., & Dollevoet, R. (2016). Monitoring bolt tightness of rail joints using axle box acceleration measurements. Structural Control and Health Monitoring, 24(2). Retrieved from http://clc.am/gFvDkg doi: 10.1002/stc.1848 (in English)

Nagy, R. (2017). Analytical differences between seven prediction models and the description of the rail track deterioration process through these methods. Intersections, 14(1), 14-32. (in English)

Nagy, R. (2017). Analytical differences between six prediction models and the description of the rail track deterioration process through these methods, Computational Civil Engineering 2017, International Symposium. Iasi. (in English)

Nagy, R. (2016). A vasúti pályageometria romlási folyamatának leírása. Sínek világa, 58(6), 12-18. (in Hungarian)

Nagy, R. (2017). Description of rail track geometry deterioration process in Hungarian rail lines No. 1 and No. 140. Pollack Periodica, 12(3), 141-156. doi: 10.1556/606.2017.12.3.13 (in English)

Zong, N., & Dhanasekar, M. (2017). Sleeper embedded insulated rail joints for minimising the number of modes of failure. Engineering Failure Analysis, 76, 27-43. doi: 10.1016/j.engfailanal.2017.02.001 (in English)

Németh, A., & Fischer, Sz. (2018). A polimer-kompozit hevederes ragasztott-szigetelt sínkötések (2. rész): Vasúti pályás vizsgálatok. Sínek világa, 60, 12-17. (in Hungarian)

Németh, A., & Fischer, Sz. (2018). Field tests of glued insulated rail joints with polymer-composite and steel fishplates. In В. Horváth, G. Horváth, В. Gábor (szerk.), Technika és technológia a fenntartható közlekedés szolgálatában: Közlekedéstudományi Konferencia (pp. 97-105). Győr: Universitas-Győr Nonprofit Kft. (in Hungarian)

Nichoga, V., Storozh, І., & Saldan, О. (2016). Defect Signal Detection within Rail Junction of Railway Tracks. Problemy Kolejnictwa, 171, 57-62. (in English)

Yang, Z., Boogaard, A., Wei, Z., Liu, J., Dollevoet, R., & Li, Z. (2018). Numerical study of wheel-rail impact contact solutions at an insulated rail joint. International Journal of Mechanical Sciences, 138-139, 310-322. doi: 10.1016/j.ijmecsci.2018.02.025 (in English)

Nunez, A., Jamshidi, A., & Wang, H. (2019). Pareto-Based Maintenance Decisions for Regional Railways with Uncertain Weld Conditions Using the Hilbert Spectrum of Axle Box Acceleration. IEEE Transactions on Industrial Informatics, 15(3), 1496-1507. doi: 10.1109/tii.2018.2847736 (in English)

Peltier, D. C., & Barkan, C. P. L. (2009). Characterizing and Inspecting for Progressive Epoxy Debonding in Bonded Insulated Rail Joints. Transportation Research Record: Journal of the Transportation Research Board, 2117(1), 85-92. doi: 10.3141/2117-11 (in English)

Peltier, D. C., & Barkan, C. P. L. (2008). Modeling the Effects оf Epoxy Debonding оn Bonded Insulated Rail Joints Subjected to Longitudinal Loads, 2008 TRB 87th Annual Meeting: Conference Recordings. Washington. Retrieved from http://clc.am/Q1cqpA (in English)

Gallou, M., Temple, B., Hardwick, C., Frost, M., & El-Hamalawi, A. (2016). Potential for external reinforcement of insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(3), 697-708. doi: 10.1177/0954409716684278 (in English)

Buggy, S. J., James, S. W., Staines, S., Carroll, R., Kitson, P., Farrington, D., … Tatam, R. P. (2016). Railway track component condition monitoring using optical fibre Bragg grating sensors. Measurement Science and Technology, 27(5). Retrieved from http://clc.am/OfQAnA doi: 10.1088/0957-0233/27/5/055201 (in English)

Luzin, V., Rathod, C., Wexler, D., Boyd, P., & Dhanasekar, M. (2013). Residual Stresses in Rail-Ends from the in-Service Insulated Rail Joints Using Neutron Diffraction. Materials Science Forum, 768-769, 741-746. doi: 10.4028/www.scientific.net/msf.768-769.741 (in English)

Sandström, J., & Ekberg, A. (2008). Numerical study of the mechanical deterioration of insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(3), 265-273. doi: 10.1243/09544097jrrt243 (in English)

Zong, N., Askarinejad, H., Heva, T. B., & Dhanasekar, M. (2013). Service Condition of Railroad Corridors around the Insulated Rail Joints. Journal of Transportation Engineering, 139(6), 643-650. doi: 10.1061/(asce)te.1943-5436.0000541 (in English)

Heckel, T., Casperson, R., Rühe, S., & Mook, G. (2018). Signal Processing for Non-Destructive Testing of Railway Tracks. AIP Conference Proceedings, 1949(1). Retrieved from http://clc.am/jOUayQ doi: 10.1063/1.5031528 (in English)

Soylemez, E., & Ciloglu, K. (2016). Influence of Track Variables and Product Design on Insulated Rail Joints. Transportation Research Record: Journal of the Transportation Research Board, 2545(1), 1-10. doi: 10.3141/2545-01 (in English)

Sueki, T., Kitagawa, T., & Kawaguchi, T. (2017). Evaluation of Acoustic and Vibratory Characteristics of Impact Noise Due to Rail Joints. Quarterly Report of RTRI, 58(2), 119-125. doi: 10.2219/rtriqr.58.2_119 (in English)

Sysyn, M. P., Kovalchuk, V. V., & Jiang, D. (2018). Performance study of the inertial monitoring method for railway turnouts. International Journal of Rail Transportation, 4, 33-42. doi: 10.1080/23248378.2018.1514282 (in English)

Szamos, A. (1991). Structures and materials of railway superstructure. Budapest: Közdok. (in English)

Sysyn, M., Gerber, U., Kovalchuk, V., & Nabochenko, O. (2018). The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works. Archives of Transport, 47(3), 91-107. doi: 10.5604/01.3001.0012.6512 (in English)

Kovalchuk, V., Sysyn, M., Sobolevska, J., Nabochenko, O., Parneta, B., & Pentsak, A. (2018). Theoretical study into efficiency of the improved longitudinal profile of frogs at railroad switches. Eastern-European Journal of Enterprise Technologies, 4/1(94), 27-36. doi: 10.15587/1729-4061.2018.139502 (in English)

Stephen, J., Hardwick, C., Beaty, P., Lewis, R., & Marshall, M. (2018). Ultrasonic monitoring of insulated block joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 233(3), 251-261. doi: 10.1177/0954409718791396 (in English)

Nicoli, E., Dillard, D. A., Dillard, J. G., Campbell, J., Davis, D. D., & Akhtar, M. (2011). Using standard adhesion tests to characterize performance of material system options for insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 225(5), 509-522. doi: 10.1177/2041301710392481 (in English)

Wöhnhart, A. (2011). ÖBB Infrastruktur AG: ÖBB Infrastruktur szigetelt kötés leírás. Nagyszilárdságú csa-varkötéssel készült szigetelt sínillesztések. Retrieved from https://mail.google.com/mail/u/0/#inbox/QgrcJHsHlltHGdfHRzQFTtBmPxKvlzMKthg?projector=1&messagePartId=0.1 (in Hungarian)

Yang, Z., Deng, X., & Li, Z. (2019). Numerical modeling of dynamic frictional rolling contact with an explicit finite element method. Tribology International, 129, 214-231. doi: 10.1016/j.triboint.2018.08.028 (in English)

Zong, N., Wexler, D., & Dhanasekar, М. (2013). Structural and Material Characterisation of Insulated Rail Joints. Electronic Journal of Structural Engineering, 13(1), 75-87. (in English)


GOST Style Citations


  1. Курган, Д. М. До вирішення задач розрахунку колії на міцність із урахуванням нерівнопружності підрейкової основи // Наука та прогрес транспорту. – 2015. – № 1 (55). – С. 90–99. doi: 10.15802/stp2015/38250
  2. Advances іn Bonded Insulated Rail Joints to Improve Product Performance [Electronic resource] / K. Ciloglu, P. C. Frye, S. Almes, S. Shue // 2014 Joint Rail Conference (April 2–4, 2014, Colorado Springs, CO, USA). – Colorado Springs, 2014. – Available at: http://clc.am/k6j0lg – Title from the screen. – Accessed: 18.03.2019. doi: 10.1115/jrc2014-3746
  3. Ágh, C. A new arrangement of accelerometers on track inspection car FMK-007 for evaluating derailment safety / C. Ágh // Track Maintenance Machines in Theory and Practice – SETRAS 2018: Conference Paper (November 2018, Žilina, Slovakia). – Žilina, 2018. – Р. 7–14.
  4. Ágh, C. Egyenértékű kúposság mérése Magyarországon: Pálya és jármű kapcsolata – futási instabilitás / C. Ágh // Sínek világa. – 2012. – Vol. 54, No. 6. – Р. 10–13.
  5. Ágh, C. Vágánygeometriai irány- és fekszinthibák valós nagyságának értékelése húrmérési eredmények alapján / C. Ágh // Közlekedéstudományi szemle. – 2018. – Vol. 68, No. 5. – Р. 46–55.
  6. Ágh, C. Vasúti kerékpár futási instabilitása a pályadiagnosztika szemszögéből / C. Ágh // Sínek világa. – 2017. – Vol. 59, No. 6. – Р. 17–20.
  7. Albakri, M. I. Modeling and experimental analysis of piezoelectric augmented systems for structural health and stress monitoring applications: Dissertation submitted for the degree of Doctor of Philosophy in Engineering Mechanics / M. I. Albakri; The Virginia Polytechnic Institute. – Blacksburg, Virginia, 2016. – 235 р.
  8. Analysis of tapered, adhesively bonded, insulated rail joints / R. H. Plaut, H. Lohse-Busch, A. Eckstein, S. Lambrecht, D. A. Dillard // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2007. – Vol. 221. – Iss. 2. – Р. 195–204. doi: 10.1243/0954409jrrt107
  9. Askarinejad, Н. Assessing the Effects of Track Input to the Response of Insulated Rail Joints Using Field Experiments / H. Askarinejad, M. Dhanasekar, C. Cole // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2012. – Vol. 227. – Iss. 2. – Р. 176–187. doi: 10.1177/0954409712458496
  10. Askarinejad, Н. Minimising the Failure of Rail Joints Through Managing the Localised Condition of Track [Electronic resource] / H. Askarinejad, M. Dhanasekar // Railway Engineering 2015. – Edinburgh, 2015. – Available at: https://clck.ru/FNZKS – Title from the screen. – Accessed: 18.03.2019.
  11. Ataei, S. Dynamic Forces at Square and Inclined Rail Joints: Field Experiments [Electronic resource] / S. Ataei, S. Mohammadzadeh, A. Miri // Journal of Transportation Engineering. – 2016. – Vol. 142. – Iss. 9. – Available at: http://clc.am/Jx0xKw – Title from the screen. – Accessed: 18.03.2019. doi: 10.1061/(ASCE)TE.1943-5436.0000866
  12. A three dimensional finite element analysis of insulated rail joints deterioration / H. M. El-sayed, M. Lotfy, H. N. El-din Zohny, H. S. Riad // Engineering Failure Analysis. – 2018. – Vol. 91. – Р. 201–215. doi: 10.1016/j.engfailanal.2018.04.042
  13. Bandula-Heva, T. M. Experimental Investigation of Wheel/Rail Rolling Contact at Railhead Edge / T. M. Bandula-Heva, M. Dhanasekar, P. Boyd // Experimental Mechanics. – 2013. – Vol. 53. – Iss. 6. – Р. 943–957. doi: 10.1007/s11340-012-9701-6
  14. Bongiorno, J. Track insulation verification and measurement [Electronic resource] / J. Bongiorno, A. Mariscotti // MATEC Web of Conferences. – 2018. – Vol. 180. – Available at: http://clc.am/L4nsTg. – Title from the screen. – Accessed: 21.03.2019. doi: 10.1051/matecconf/201818001008
  15. Mechanical requirements for joints in running rails: WG 18 / DG 11 [Electronic resource]. – 2010. – 32 p. – Available at: https://mail.google.com/mail/u/0/#inbox/QgrcJHsHlltHGdfHRzQFTtBmPxKvlzMKthg?projector=1&messagePartId=0.6 – Title from the screen. – Accessed: 22.03.2019.
  16. Chen, Y. C. Contact stress variations near the insulated rail joints / Y. C. Chen, J. H. Kuang // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2002. – Vol. 216. – Iss. 4. – Р. 265–273. doi: 10.1243/095440902321029217
  17. Cheng, Y. Transient Analysis of Electric Arc Burning at Insulated Rail Joints in High-Speed Railway Stations Based on State-Space Modeling / Y. Cheng, Z. Liu, K. Huang // IEEE Transactions on Transportation Electrification. – 2017. – Vol. 3. – Iss. 3. – Р. 750–761. doi: 10.1109/tte.2017.2713100
  18. Dhanasekar, М. Performance of square and inclined insulated rail joints based on field strain measurements / M. Dhanasekar, W. Bayissa // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2011. – Vol. 226. – Iss. 2. – Р. 140–154. doi: 10.1177/0954409711415898
  19. Dhanasekar, М. Research Outcomes for Improved Management of Insulated Rail Joints / М. Dhanasekar // Railway Engineering. – Edingburgh, United Kingdom, 2015. – Р. 1–14.
  20. El-khateeb, L. Defect-based Condition Assessment Model of Railway Infrastructure: A Thesis in the Department of Building, Civil and Environmental Engineering / Laith El-khateeb ; Concordia University. – Montreal, Quebec, Canada, 2017. – 139 р.
  21. Elshukri, F. A. An Experimental Investigation and Improvement of Insulated Rail Joints (IRJs) аnd Post Performance: A thesis submitted for the degree of Doctor of Philosophy / Fathi A. Elshukri ; The University of Sheffield. – Sheffield, 2016. – 206 р.
  22. Elshukri, F. А. An Experimental Investigation and Improvement of Insulated Rail Joints / F. A. Elshukri, R. Lewis // Tribology in Industry. – 2016. – Vol. 38, No. 1. – Р. 121–126.
  23. Elshukri, F. A. An Experimental Investigation аnd Improvement оf Insulated Rail Joints / F. A. Elshukri, R. Lewis // 14th International Serbian Conference on Tribology – Serbiatrib'15 (Belgrade, Serbia, 13–15 May 2015). – Belgrade, Serbia, 2015. – P. 1–7.
  24. Experimental Investigation Into the Condition of Insulated Rail Joints by Impact Excitation / M. Oregui, M. Molodova, A. Núñez, R. Dollevoet, Z. Li // Experimental Mechanics. – 2015. – Vol. 55. – Iss. 9. – Р. 1597–1612. doi: 10.1007/s11340-015-0048-7
  25. Experimental Investigation into the Failure Behaviour оf Insulated Rail Joints [Electronic resource] / P. Boyd, N. Mandal, T. Bandula, N. Zong, M. Dhanasekar // Conference оn Railway Engineering, CORE (Brisbane 10–12 September 2012). – Brisbane, 2012. – Available at: https://clck.ru/FMM5c – Title from the screen. – Accessed: 13.03.2019.
  26. Experimental modelling of lipping in insulated rail joints and investigation of rail head material improvements / P. Beaty, B. Temple, M. B. Marshall, R. Lewis // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2016. – Vol. 230. – Iss. 4. – Р. 1375–1387. doi: 10.1177/0954409715600740
  27. Fischer, Sz. Investigation of polymer-composite fishplated glued insulated rail joints in laboratory, as well as in field tests for dynamic effects: Research Report / Sz. Fischer, А. Németh. – Győr: Universitas-Győr Nonprofit Ltd., 2017. – 578 p.
  28. Full-scale testing of laser clad railway track; Case study – Testing for wear, bend fatigue and insulated block joint lipping integrity / S. R. Lewis, R. Lewis, P. S. Goodwin, S. Fretwell-Smith, D. I. Fletcher, K. Murray, J. Jaiswal // Wear. – 2017. – Vol. 376-377. – Р. 1930–1937. doi: 10.1016/j.wear.2017.02.023
  29. Health monitoring on line of the impedance of the glued isolating joints to improve the availability of the French railway lines [Electronic resource] / J. de Reffye, M. Antoni // 20e Congrès de maîtrise des risques et de sûreté de fonctionnement (Saint-Malo 11–13 Оctobre 2016). – Saint-Malo, 2016. – Available at: https://clck.ru/FLzVH – Title from the screen. – Accessed: 13.03.2019.
  30. Himebaugh, A. K. Finite element analysis of bonded insulated rail joints / A. K. Himebaugh, R. H. Plaut, D. A. Dillard // International Journal of Adhesion and Adhesives. – 2008. – Vol. 28. – Iss. 3. – Р. 142–150. doi: 10.1016/j.ijadhadh.2007.09.003
  31. Horvát, F. Application of polymer-composite fishplates for glued insulated rail joints: Research Report / F. Horvát. – Győr: Széchenyi István Egyetem, 2012. – 62 p.
  32. Impact Load Response of PC Rail Joint Sleeper under a Passing Train [Electronic resource] / K. Goto, S. Minoura, T. Watanabe, C. Ngamkhanong, S. Kaewunruen // Journal of Physics: Conference Series. – 2018. – Vol. 1106. – Available at: https://clck.ru/FPHtF – Title from the screen. – Accessed: 18.03.2019. doi: 10.1088/1742-6596/1106/1/012008
  33. Kabo, Е. Prediction of dynamic train-track interaction and subsequent material de-terioration in the presence of insulated rail joints / E. Kabo, J. C. O. Nielsen, A. Ekberg // Vehicle System Dynamics. – 2006. – Vol. 44. – Іss. sup1. – Р. 718–729. doi: 10.1080/00423110600885715
  34. Kaewunruen, S. Railway track inspection and maintenance priorities due to dynamic coupling effects of dipped rails and differential track settlements [Electronic resource] / S. Kaewunruen, C. Chiengson // Engineering Failure Analysis. – 2018. – Vol. 93. – Р. 157–171. doi: 10.1016/j.engfailanal.2018.07.009
  35. Kaewunruen, S. Vibration attenuation at rail joints through under sleeper pads / S. Kaewunruen, А. Aikawa, A. М. Remennikov // Procedia Engineering. – 2017. – Vol. 189. – Р. 193–198. doi: 10.1016/j.proeng.2017.05.031
  36. Kurhan, D. Determination of Load for Quasi-static Calculations of Railway Track Stress-strain State // Acta Technica Jaurinensis. – 2016. – Vol. 9, No. 1. – Р. 83–96. doi: 10.14513/actatechjaur.v9.n1.400
  37. Mandal, N. K. An Engineering Analysis of Insulated Rail Joints: A General Perspective / N. K. Mandal, B. Peach // International Journal of Engineering Science and Technology. – 2010. – Vol. 2 (8). – Р. 3964–3988.
  38. Mandal, N. K. Stress Analysis оf Joint Bars оf Insulated Rail Joints Due to Wheel/Rail Contact Loadings / N. K. Mandal // The 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, CM2018 (Delft, the Netherlands, September 24–27, 2018). – Delft, 2018. – Р. 675–680.
  39. Mayers, А. The effect of heavy haul train speed on insulated rail joint bar strains / A. Mayers // Australian Journal of Structural Engineering. – 2017. – Vol. 18. – Iss. 3. – Р. 148–159. doi: 10.1080/13287982.2017.1363977
  40. Microstructural Characterisation of Railhead Damage in Insulated Rail Joints / C. Rathod, D. Wexler, T. Chandra, H. Li // Materials Science Forum. – 2012. – Vol. 706-709. – Р. 2937–2942. doi: 10.4028/www.scientific.net/msf.706-709.2937
  41. Monitoring bolt tightness of rail joints using axle box acceleration measurements / M. Oregui, S. Li, A. Núñez, Z. Li, R. Carroll, R. Dollevoet // Structural Control аnd Health Monitoring. – 2017. – Vol. 24. – Iss. 2. – Available at: http://clc.am/gFvDkg – Title from the screen. – Accessed: 18.03.2019. doi: 10.1002/stc.1848
  42. Nagy, R. Analytical differences between seven prediction models and the description of the rail track deterioration process through these methods / R. Nagy // Intersections. – 2017. – Vol. 14, No. 1. – Р. 14–32.
  43. Nagy, R. Analytical differences between six prediction models and the description of the rail track deterioration process through these methods / R. Nagy // Computational Civil Engineering 2017: International Symposium (Iasi, Romania, May 26, 2017). – Iasi, 2017. – Р. 31–50.
  44. Nagy, R. A vasúti pályageometria romlási folyamatának leírása / R. Nagy // Sínek világa. – 2016. – Vol. 58, No. 6. – Р. 12–18.
  45. Nagy, R. Description of rail track geometry deterioration process in Hungarian rail lines No. 1 and No. 140 / R. Nagy // Pollack Periodica. – 2017. – Vol. 12. – Iss. 3. – Р. 141–156. doi: 10.1556/606.2017.12.3.13
  46. Nannan, Z. Sleeper embedded insulated rail joints for minimising the number of modes of failure / N. Zong, M. Dhanasekar // Engineering Failure Analysis. – 2017. – Vol. 76. – Р. 27–43. doi: 10.1016/j.engfailanal.2017.02.001
  47. Németh, A. A polimer-kompozit hevederes ragasztott-szigetelt sínkötések (2. rész): Vasúti pályás vizsgálatok / А. Németh, Sz. Fischer // Sínek világa. – 2018. – No. 60. – Р. 12–17.
  48. Németh, A. Field tests of glued insulated rail joints with polymer-composite and steel fishplates / А. Németh, Sz. Fischer // Technika és technológia a fenntartható közlekedés szolgálatában: Közlekedéstudományi Konferencia / В. Horváth, G. Horváth, В. Gábor (szerk.). – Győr, Ma-gyarország: Universitas-Győr Nonprofit Kft., 2018. – Р. 97–105.
  49. Nichoga, V. Defect Signal Detection Within Rail Junction of Railway Tracks / V. Nichoga, I. Storozh, O. Saldan // Problemy Kolejnictwa. – 2016. – Zesz. 171. – Р. 57–62.
  50. Numerical study of wheel-rail impact contact solutions at an insulated rail joint / Z. Yang, A. Boogaard, Z. Wei, J. Liu, R. Dollevoet, Z. Li // International Journal of Mechanical Sciences. – 2018. – Vol. 138-139. – Р. 310–322. doi: 10.1016/j.ijmecsci.2018.02.025
  51. Nunez, А. Pareto-Based Maintenance Decisions for Regional Railways with Uncertain Weld Conditions Using the Hilbert Spectrum of Axle Box Acceleration / A. Nunez, A. Jamshidi, H. Wang // IEEE Transactions on Industrial Informatics. – 2019. – Vol. 15. – Iss. 3. – Р. 1496–1507. doi: 10.1109/tii.2018.2847736
  52. Peltier, D. C. Characterizing and Inspecting for Progressive Epoxy Debonding in Bonded Insulated Rail Joints / D. C. Peltier, C. P. L. Barkan // Transportation Research Record: Journal of the Transportation Research Board. – 2009. – Vol. 2117. – Iss. 1. – Р. 85–92. doi: 10.3141/2117-11
  53. Peltier, D. C. Modeling the Effects оf Epoxy Debonding оn Bonded Insulated Rail Joints Subjected to Longitudinal Loads [Electronic resource] / D. C. Peltier, C. P. L. Barkan // 2008 TRB 87th Annual Meeting: Conference Recordings (January 13–17, 2008, Washington, D. C.). – Washington, 2008. – Available at: http://clc.am/Q1cqpA – Title from the screen. – Accessed: 13.03.2019.
  54. Potential for external reinforcement of insulated rail joints / M. Gallou, B. Temple, C. Hardwick, M. Frost, A. El-Hamalawi // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2016. – Vol. 232. – Iss. 3. – Р. 697–708. doi: 10.1177/0954409716684278
  55. Railway track component condition monitoring using optical fibre Bragg grating sensors [Electronic resource] / S. J. Buggy, S. W. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, R. P. Tatam // Measurement Science and Technology. – 2016. – Vol. 27. – Iss. 5. – Available at: http://clc.am/OfQAnA – Title from the screen. – Accessed: 18.03.2019. doi: 10.1088/0957-0233/27/5/055201
  56. Residual Stresses in Rail-Ends from the in-Service Insulated Rail Joints Using Neutron Diffraction / V. Luzin, C. Rathod, D. Wexler, P. Boyd, M. Dhanasekar // Materials Science Forum. – 2013. – Vol. 768-769. – Р. 741–746. doi: 10.4028/www.scientific.net/MSF.768-769.741
  57. Sandström, J. Numerical study of the mechanical deterioration of insulated rail joints / J. Sandström, A. Ekberg // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2009. – Vol. 223. – Iss. 3. – Р. 265–273. doi: 10.1243/09544097jrrt243
  58. Service Condition of Railroad Corridors around the Insulated Rail Joints / N. Zong, H. Askarinejad, T. B. Heva, M. Dhanasekar // Journal of Transportation Engineering. – 2013. – Vol. 139. – Iss. 6. – Р. 643–650. doi: 10.1061/(asce)te.1943-5436.0000541
  59. Signal Processing for Non-Destructive Testing оf Railway Tracks [Electronic resource] / T. Heckel, R. Casperson, S. Rühe, G. Mook // AIP Conference Proceedings. – 2018. – Vol. 1949. – Iss. 1. – Available at: http://clc.am/jOUayQ – Title from the screen. – Accessed: 18.03.2019. doi: 10.1063/1.5031528
  60. Soylemez, E. Influence of Track Variables and Product Design on Insulated Rail Joints / E. Soylemez, K. Ciloglu // Transportation Research Record: Journal of the Transportation Research Board. – 2016. – Vol. 2545. – Iss. 1. – Р. 1–10. doi: 10.3141/2545-01
  61. Sueki, Т. Evaluation of Acoustic and Vibratory Characteristics of Impact Noise Due to Rail Joints / T. Sueki, T. Kitagawa, T. Kawaguchi // Quarterly Report of RTR. – 2017. – Vol. 58. – Iss. 2. – Р. 119–125. doi: 10.2219/rtriqr.58.2_119
  62. Sysyn, M. P. Performance study of the inertial monitoring method for railway turnouts / M. P. Sysyn, V. V. Kovalchuk, D. Jiang // International Journal of Rail Transportation. – 2018. – Vol. 4. – Р. 33–42. doi: 10.1080/23248378.2018.1514282
  63. Szamos, A. Structures and materials of railway superstructure / A. Szamos. – Budapest: Közdok, 1991. – 459 p.
  64. The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works / M. Sysyn, U. Gerber, V. Kovalchuk, O. Nabochenko // Archives of Transport. – 2018. – Vol. 46. – Iss. 3. – Р. 91–107. doi: 10.5604/01.3001.0012.6512
  65. Theoretical study into efficiency of the improved longitudinal profile of frogs at railroad switches / V. Kovalchuk, M. Sysyn, J. Sobolevska, O. Nabochenko, B. Parneta, A. Pentsak // Eastern European Journal of Enterprise Technologies. – 2018. – Vol. 4, No. 1. – Р. 27–36. doi: 10.15587/1729-4061.2018.139502
  66. Ultrasonic Monitoring of Insulated Block Joints / J. Stephen, C. Hardwick, P. Beaty, R. Lewis, M. Marshall // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2018. – Vol. 233. – Iss. 3. – Р. 251–261. doi: 10.1177/0954409718791396
  67. Using standard adhesion tests to characterize performance of material system options for insulated rail joints / E. Nicoli, D. A. Dillard, J. G. Dillard, J. Campbell, D. D. Davis, M. Akhtar // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2011. – Vol. 225. – Iss. 5. – Р. 509–522. doi: 10.1177/2041301710392481
  68. Wöhnhart, A. ÖBB Infrastruktur AG: ÖBB Infrastruktur szigetelt kötés leírás. Nagyszilárdságú csa-varkötéssel készült szigetelt sínillesztések [Electronic resource] / A. Wöhnhart – 2011. – 88 p. – Available at: https://mail.google.com/mail/u/0/#inbox/QgrcJHsHlltHGdfHRzQFTtBmPxKvlzMKthg?projector=1&messagePartId=0.1. – Title from the screen. – Accessed: 22.03.2019.
  69. Yang, Z. Numerical modeling of dynamic frictional rolling contact with an explicit finite element method / Z. Yang, X. Deng, Z. Li // Tribology International. – 2019. – Vol. 129. – Р. 214–231. doi: 10.1016/j.triboint.2018.08.028
  70. Zong, N. Structural and Material Characterisation of Insulated Rail Joints / N. Zong, D. Wexler, M. Dhanasekar // Electronic Journal of Structural Engineering. – 2013. – Vol. 13. – Iss. 1. – Р. 75–87.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)