FIELD TESTS OF GLUED INSULATED RAIL JOINTS WITH USAGE OF SPECIAL PLASTIC AND STEEL FISHPLATES

Authors

DOI:

https://doi.org/10.15802/stp2019/165874

Keywords:

polymer-composite, fishplate, rail joint, railway, field test

Abstract

Purpose. The aim was to compare behavior of polymer-composite fishplated and control steel fishplated (type GTI and MTH-P) glued insulated rail joints in railway track. Methodology. After laboratory tests (shear tests of glue materials, 3-point-bending tests, axial pull tests), as well as field inspections, trial polymer-composite and control (steel) fishplated glued insulated rail joints were built into railway tracks with (almost) the same border conditions (rail profiles, cross section parameters, track condition, etc.). The authors summarize in this paper the results of field tests related to polymer-composite, as well as control (steel) fishplated glued insulated rail joints between 2015 and 2018 considering measured data of track geometry recording car and straightness tests. Findings. The investigation and diagnostics of experimental (fiber-glass reinforced fishplate) and control (steel fishplate) rail joints (straightness tests, track geometry recording car measurements) are in progress. Originality. The goal of the research is to investigate the application of this new type of glued insulated rail joint where the fishplates are manufactured at high pressure, regulated temperature, glass-fiber reinforced polymer composite plastic material. The usage of this kind of glued insulated rail joints is able to eliminate the electric fishplate circuit and early fatigue deflection and it can ensure the isolation of rails’ ends from each other by aspect of electric conductivity. Practical value. The polymer-composite fishplated glued-insulated rail joints and control steel fishplated rail joints were built into the No. 1 main railway line (Kelenföld-Hegyeshalom) in Hungary at three different railway stations. The accurate time could not be determined when the polymer-composite fishplated glued-insulated rail joints reach the end of their lifetime as the result of previous research. In this article the investigation of deterioration process of glued-insulated rail joints is demonstrated.

Author Biographies

A. Nemeth, Szechenyi Istvan University

Dep. «Transport Infastructure and Water Resources Engineering», Szechenyi Istvan University, Egyetem Sq., 1, Gyor, Hungary, 9026, tel. + 36 (96) 613 544, e-mail nemeth.attila@sze.hu

S. Fischer, Szechenyi Istvan University

Dep. «Transport Infastructure and Water Resources Engineering», Szechenyi Istvan University, Egyetem Sq., 1, Gyor, Hungary, 9026, tel. + 36 (96) 613 544, e-mail fischersz@sze.hu

References

Kurhan, D. M. (2015). To the solution of problems about the railways calculation for strength taking into account unequal elasticity of the subrail base. Science and Transport Progress, 1(55), 90-99. doi: 10.15802/stp2015/38250 (in English)

Ciloglu, K., Frye, P. C., Almes, S., & Shue, S. (2014). Advances in Bonded Insulated Rail Joints to Improve Product Performance, 2014 Joint Rail Conference. Colorado Springs. Retrieved from http://clc.am/k6j0lg doi: 10.1115/jrc2014-3746 (in English)

Ágh, C. (2018). A new arrangement of accelerometers on track inspection car FMK-007 for evaluating derailment safety, Track Maintenance Machines in Theory and Practice, SETRAS 2018. Žilina. (in English)

Ágh, C. (2012). Egyenértékű kúposság mérése Magyarországon: Pálya és jármű kapcsolata – futási instabilitás. Sínek világa, 54(6), 10-13. (in Hungarian)

Ágh, C. (2018). Vágánygeometriai irány- és fekszinthibák valós nagyságának értékelése húrmérési eredmények alapján. Közlekedéstudományi szemle, 68(5), 46-55. (in Hungarian)

Ágh, C. (2017). Vasúti kerékpár futási instabilitása a pályadiagnosztika szemszögéből. Sínek világa, 59(6), 17-20. (in Hungarian)

Albakri, M. I. (2016). Modeling and experimental analysis of piezoelectric augmented systems for structural health and stress monitoring applications. (Dissertation submitted for the degree of Doctor of Philosophy in Engineering Mechanics). The Virginia Polytechnic Institе, Blacksburg. (in English)

Plaut, R. H., Lohse-Busch, H., Eckstein, A., Lambrecht, S., & Dillard, D. A. (2007). Analysis of tapered, adhesively bonded, insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 221(2), 195-204. doi: 10.1243/0954409jrrt107 (in English)

Askarinejad, H., Dhanasekar, M., & Cole, C. (2012). Assessing the Effects of Track Input to the Response of Insulated Rail Joints Using Field Experiments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 227(2), 176-187. doi: 10.1177/0954409712458496 (in English)

Askarinejad, Н., & Dhanasekar, М. (2015). Minimising the Failure of Rail Joints through Managing the Localised Condition of Track. Railway Engineering 2015. Edinburgh. Retrieved from https://clck.ru/FNZKS (in English)

Ataei, S., Mohammadzadeh, S., & Miri, A. (2016). Dynamic Forces at Square and Inclined Rail Joints: Field Experiments. Journal of Transportation Engineering, 142(9). Retrieved from http://clc.am/Jx0xKw doi: 10.1061/(asce)te.1943-5436.0000866 (in English)

El-sayed, H. M., Lotfy, M., El-din Zohny, H. N., & Riad, H. S. (2018). A three dimensional finite element analysis of insulated rail joints deterioration. Engineering Failure Analysis, 91, 201-215. doi: 10.1016/j.engfailanal.2018.04.042 (in English)

Bandula-Heva, T. M., Dhanasekar, M., & Boyd, P. (2012). Experimental Investigation of Wheel/Rail Rolling Contact at Railhead Edge. Experimental Mechanics, 53(6), 943-957. doi: 10.1007/s11340-012-9701-6 (in English)

Bongiorno, J., & Mariscotti, A. (2018). Track insulation verification and measurement. MATEC Web of Conferences, 180. Retrieved from http://clc.am/L4nsTg doi: 10.1051/matecconf/201818001008 (in English)

Mechanical requirements for joints in running rails: WG 18 / DG 11. (2010). Retrieved from: https://mail.google.com/mail/u/0/#inbox/QgrcJHsHlltHGdfHRzQFTtBmPxKvlzMKthg?projector=1&messagePartId=0.6 (in English)

Chen, Y. C., & Kuang, J. H. (2002). Contact stress variations near the insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 216(4), 265-273. doi: 10.1243/095440902321029217 (in English)

Cheng, Y., Liu, Z., & Huang, K. (2017). Transient Analysis of Electric Arc Burning at Insulated Rail Joints in High-Speed Railway Stations Based on State-Space Modeling. IEEE Transactions on Transportation Electrification, 3(3), 750-761. doi: 10.1109/tte.2017.2713100 (in English)

Dhanasekar, M., & Bayissa, W. (2011). Performance of square and inclined insulated rail joints based on field strain measurements. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 226(2), 140-154. doi: 10.1177/0954409711415898 (in English)

Dhanasekar, М. (2015). Research outcomes for improved management of insulated rail joints. In Forde, M. C. (Ed.), Railway Engineering (pp. 1-14). Edingburgh, United Kingdom. (in English)

El-khateeb, L. (2017). Defect-based Condition Assessment Model of Railway Infrastructure. (A Thesis in The Department of Building, Civil and Environmental Engineering). Concordia University, Montreal. (in English)

Elshukri, F. A. (2016). An Experimental Investigation and Improvement of Insulated Rail Joints (IRJs) еnd Post Performance. (A thesis submitted for the degree of Doctor of Philosophy). The University of Sheffield, Sheffield. (in English)

Elshukri, F. A., & Lewis, R. (2016). An Experimental Investigation and Improvement of Insulated Rail Joints. Tribology in Industry, 38(1), 121-126. (in English)

Elshukri, F. A., & Lewis, R. (2015). An Experimental Investigation and Improvement of Insulated Rail Joints, 14th International Serbian Conference on Tribology, Serbiatrib'15. Belgrade. (in English)

Oregui, M., Molodova, M., Núñez, A., Dollevoet, R., & Li, Z. (2015). Experimental Investigation Into the Condition of Insulated Rail Joints by Impact Excitation. Experimental Mechanics, 55(9), 1597-1612. doi: 10.1007/s11340-015-0048-7 (in English)

Boyd, Р., Mandal, N., Bandula, Т., Zong, N., & Dhanasekar, М. (2012). Experimental Investigation into the Failure Behaviour of Insulated Rail Joints, Conference on Railway Engineering, CORE. Brisbane. Retrieved from https://clck.ru/FMM5c (in English)

Beaty, P., Temple, B., Marshall, M. B., & Lewis, R. (2016). Experimental modelling of lipping in insulated rail joints and investigation of rail head material improvements. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(4), 1375-1387. doi: 10.1177/0954409715600740 (in English)

Fischer, Sz., & Németh, A. (2017). Investigation of polymer-composite fishplated glued insulated rail joints in laboratory, as well as in field tests for dynamic effects: Research Report. Győr: Universitas-Győr Nonprofit Ltd. (in Hungarian)

Lewis, S. R., Lewis, R., Goodwin, P. S., Fretwell-Smith, S., Fletcher, D. I., Murray, K., & Jaiswal, J. (2017). Full-scale testing of laser clad railway track; Case study – Testing for wear, bend fatigue and insulated block joint lipping integrity. Wear, 376-377, 1930-1937. doi: 10.1016/j.wear.2017.02.023 (in English)

Reffye, J. de, & Antoni, М. (2016). Health monitoring on line of the impedance of the glued isolating joints to improve the availability of the French railway lines, 20e Congrès de maîtrise des risques et de sûreté de fonctionnement. Saint-Malo. Retrieved from https://clck.ru/FLzVH (in English)

Himebaugh, A. K., Plaut, R. H., & Dillard, D. A. (2008). Finite element analysis of bonded insulated rail joints. International Journal of Adhesion and Adhesives, 28(3), 142-150. doi: 10.1016/j.ijadhadh.2007.09.003 (in English)

Horvát, F. (2012). Application of polymer-composite fishplates for glued insulated rail joints: Research Report. Győr: Széchenyi István Egyetem. (in Hungarian)

Goto, K., Minoura, S., Watanabe, T., Ngamkhanong, C., & Kaewunruen, S. (2018). Impact Load Response of PC Rail Joint Sleeper under a Passing Train. Journal of Physics: Conference Series, 1106. Retrieved from https://clck.ru/FPHtF doi: 10.1088/1742-6596/1106/1/012008 (in English)

Kabo, E., Nielsen, J. C. O., & Ekberg, A. (2006). Prediction of dynamic train–track interaction and subsequent material deterioration in the presence of insulated rail joints. Vehicle System Dynamics, 44(sup1), 718-729. doi: 10.1080/00423110600885715 (in English)

Kaewunruen, S., & Chiengson, C. (2018). Railway track inspection and maintenance priorities due to dynamic coupling effects of dipped rails and differential track settlements. Engineering Failure Analysis, 93, 157-171. doi: 10.1016/j.engfailanal.2018.07.009 (in English)

Kaewunruen, S., Aikawa, A., & Remennikov, A. M. (2017). Vibration Attenuation at Rail Joints through under Sleeper Pads. Procedia Engineering, 189, 193-198. doi: 10.1016/j.proeng.2017.05.031 (in English)

Kurhan, D. (2016). Determination of Load for Quasi-static Calculations of Railway Track Stress-strain State. Acta Technica Jaurinensis, 9(1), 83-96. doi: 10.14513/actatechjaur.v9.n1.400 (in English)

Mandal, N. K., & Peach, В. (2010). An Engineering Analysis of Insulated Rail Joints: A General Perspective. International Journal of Engineering Science and Technology, 2(8), 3964-3988. (in English)

Mandal, N. K. (2018). Stress Analysis оf Joint Bars оf Insulated Rail Joints Due to Wheel/Rail Contact Loadings, the 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, CM2018. Delft. (in English)

Mayers, A. (2017). The effect of heavy haul train speed on insulated rail joint bar strains. Australian Journal of Structural Engineering, 18(3), 148-159. doi: 10.1080/13287982.2017.1363977 (in English)

Rathod, C., Wexler, D., Chandra, T., & Li, H. (2012). Microstructural Characterisation of Railhead Damage in Insulated Rail Joints. Materials Science Forum, 706-709, 2937-2942. doi: 10.4028/www.scientific.net/msf.706-709.2937 (in English)

Oregui, M., Li, S., Núñez, A., Li, Z., Carroll, R., & Dollevoet, R. (2016). Monitoring bolt tightness of rail joints using axle box acceleration measurements. Structural Control and Health Monitoring, 24(2). Retrieved from http://clc.am/gFvDkg doi: 10.1002/stc.1848 (in English)

Nagy, R. (2017). Analytical differences between seven prediction models and the description of the rail track deterioration process through these methods. Intersections, 14(1), 14-32. (in English)

Nagy, R. (2017). Analytical differences between six prediction models and the description of the rail track deterioration process through these methods, Computational Civil Engineering 2017, International Symposium. Iasi. (in English)

Nagy, R. (2016). A vasúti pályageometria romlási folyamatának leírása. Sínek világa, 58(6), 12-18. (in Hungarian)

Nagy, R. (2017). Description of rail track geometry deterioration process in Hungarian rail lines No. 1 and No. 140. Pollack Periodica, 12(3), 141-156. doi: 10.1556/606.2017.12.3.13 (in English)

Zong, N., & Dhanasekar, M. (2017). Sleeper embedded insulated rail joints for minimising the number of modes of failure. Engineering Failure Analysis, 76, 27-43. doi: 10.1016/j.engfailanal.2017.02.001 (in English)

Németh, A., & Fischer, Sz. (2018). A polimer-kompozit hevederes ragasztott-szigetelt sínkötések (2. rész): Vasúti pályás vizsgálatok. Sínek világa, 60, 12-17. (in Hungarian)

Németh, A., & Fischer, Sz. (2018). Field tests of glued insulated rail joints with polymer-composite and steel fishplates. In В. Horváth, G. Horváth, В. Gábor (szerk.), Technika és technológia a fenntartható közlekedés szolgálatában: Közlekedéstudományi Konferencia (pp. 97-105). Győr: Universitas-Győr Nonprofit Kft. (in Hungarian)

Nichoga, V., Storozh, І., & Saldan, О. (2016). Defect Signal Detection within Rail Junction of Railway Tracks. Problemy Kolejnictwa, 171, 57-62. (in English)

Yang, Z., Boogaard, A., Wei, Z., Liu, J., Dollevoet, R., & Li, Z. (2018). Numerical study of wheel-rail impact contact solutions at an insulated rail joint. International Journal of Mechanical Sciences, 138-139, 310-322. doi: 10.1016/j.ijmecsci.2018.02.025 (in English)

Nunez, A., Jamshidi, A., & Wang, H. (2019). Pareto-Based Maintenance Decisions for Regional Railways with Uncertain Weld Conditions Using the Hilbert Spectrum of Axle Box Acceleration. IEEE Transactions on Industrial Informatics, 15(3), 1496-1507. doi: 10.1109/tii.2018.2847736 (in English)

Peltier, D. C., & Barkan, C. P. L. (2009). Characterizing and Inspecting for Progressive Epoxy Debonding in Bonded Insulated Rail Joints. Transportation Research Record: Journal of the Transportation Research Board, 2117(1), 85-92. doi: 10.3141/2117-11 (in English)

Peltier, D. C., & Barkan, C. P. L. (2008). Modeling the Effects оf Epoxy Debonding оn Bonded Insulated Rail Joints Subjected to Longitudinal Loads, 2008 TRB 87th Annual Meeting: Conference Recordings. Washington. Retrieved from http://clc.am/Q1cqpA (in English)

Gallou, M., Temple, B., Hardwick, C., Frost, M., & El-Hamalawi, A. (2016). Potential for external reinforcement of insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(3), 697-708. doi: 10.1177/0954409716684278 (in English)

Buggy, S. J., James, S. W., Staines, S., Carroll, R., Kitson, P., Farrington, D., … Tatam, R. P. (2016). Railway track component condition monitoring using optical fibre Bragg grating sensors. Measurement Science and Technology, 27(5). Retrieved from http://clc.am/OfQAnA doi: 10.1088/0957-0233/27/5/055201 (in English)

Luzin, V., Rathod, C., Wexler, D., Boyd, P., & Dhanasekar, M. (2013). Residual Stresses in Rail-Ends from the in-Service Insulated Rail Joints Using Neutron Diffraction. Materials Science Forum, 768-769, 741-746. doi: 10.4028/www.scientific.net/msf.768-769.741 (in English)

Sandström, J., & Ekberg, A. (2008). Numerical study of the mechanical deterioration of insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(3), 265-273. doi: 10.1243/09544097jrrt243 (in English)

Zong, N., Askarinejad, H., Heva, T. B., & Dhanasekar, M. (2013). Service Condition of Railroad Corridors around the Insulated Rail Joints. Journal of Transportation Engineering, 139(6), 643-650. doi: 10.1061/(asce)te.1943-5436.0000541 (in English)

Heckel, T., Casperson, R., Rühe, S., & Mook, G. (2018). Signal Processing for Non-Destructive Testing of Railway Tracks. AIP Conference Proceedings, 1949(1). Retrieved from http://clc.am/jOUayQ doi: 10.1063/1.5031528 (in English)

Soylemez, E., & Ciloglu, K. (2016). Influence of Track Variables and Product Design on Insulated Rail Joints. Transportation Research Record: Journal of the Transportation Research Board, 2545(1), 1-10. doi: 10.3141/2545-01 (in English)

Sueki, T., Kitagawa, T., & Kawaguchi, T. (2017). Evaluation of Acoustic and Vibratory Characteristics of Impact Noise Due to Rail Joints. Quarterly Report of RTRI, 58(2), 119-125. doi: 10.2219/rtriqr.58.2_119 (in English)

Sysyn, M. P., Kovalchuk, V. V., & Jiang, D. (2018). Performance study of the inertial monitoring method for railway turnouts. International Journal of Rail Transportation, 4, 33-42. doi: 10.1080/23248378.2018.1514282 (in English)

Szamos, A. (1991). Structures and materials of railway superstructure. Budapest: Közdok. (in English)

Sysyn, M., Gerber, U., Kovalchuk, V., & Nabochenko, O. (2018). The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works. Archives of Transport, 47(3), 91-107. doi: 10.5604/01.3001.0012.6512 (in English)

Kovalchuk, V., Sysyn, M., Sobolevska, J., Nabochenko, O., Parneta, B., & Pentsak, A. (2018). Theoretical study into efficiency of the improved longitudinal profile of frogs at railroad switches. Eastern-European Journal of Enterprise Technologies, 4/1(94), 27-36. doi: 10.15587/1729-4061.2018.139502 (in English)

Stephen, J., Hardwick, C., Beaty, P., Lewis, R., & Marshall, M. (2018). Ultrasonic monitoring of insulated block joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 233(3), 251-261. doi: 10.1177/0954409718791396 (in English)

Nicoli, E., Dillard, D. A., Dillard, J. G., Campbell, J., Davis, D. D., & Akhtar, M. (2011). Using standard adhesion tests to characterize performance of material system options for insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 225(5), 509-522. doi: 10.1177/2041301710392481 (in English)

Wöhnhart, A. (2011). ÖBB Infrastruktur AG: ÖBB Infrastruktur szigetelt kötés leírás. Nagyszilárdságú csa-varkötéssel készült szigetelt sínillesztések. Retrieved from https://mail.google.com/mail/u/0/#inbox/QgrcJHsHlltHGdfHRzQFTtBmPxKvlzMKthg?projector=1&messagePartId=0.1 (in Hungarian)

Yang, Z., Deng, X., & Li, Z. (2019). Numerical modeling of dynamic frictional rolling contact with an explicit finite element method. Tribology International, 129, 214-231. doi: 10.1016/j.triboint.2018.08.028 (in English)

Zong, N., Wexler, D., & Dhanasekar, М. (2013). Structural and Material Characterisation of Insulated Rail Joints. Electronic Journal of Structural Engineering, 13(1), 75-87. (in English)

Downloads

Published

2019-05-02

How to Cite

Nemeth, A., & Fischer, S. (2019). FIELD TESTS OF GLUED INSULATED RAIL JOINTS WITH USAGE OF SPECIAL PLASTIC AND STEEL FISHPLATES. Science and Transport Progress, (2(80), 60–76. https://doi.org/10.15802/stp2019/165874

Issue

Section

RAILROAD AND ROADWAY NETWORK