DOI: https://doi.org/10.15802/stp2019/170017

ATMOSPHERE PROTECTION FROM POLLUTION IN ACCIDENTAL SITUATIONS AT CHEMICALLY HAZARDOUS OBJECTS

M. M. Biliaiev, I. V. Kalashnikov, V. I. Shynkarenko, V. M. Horiachkin

Abstract


Purpose. The work involves the development of numerical models to assess the effectiveness of the air curtain usage near the building in the event of chemical pollution. Methodology. To describe the process of dispersion of a chemically hazardous substance, emitted in emergency situations, the three-dimensional equation of impurity mass transfer in atmospheric air is used. To calculate the air velocity field near the building in the presence of an air curtain, a potential-flow model is used. The modelling equations take into account the velocity field of the wind flow, atmospheric diffusion, and the intensity of the emission of a chemically hazardous substance into the atmosphere. For the numerical integration of the mass transfer equations, implicit difference schemes are used. The complex of programs was created to solve the problem of calculating pollution zones near buildings in the presence of an air curtain. The application of the developed model allows you to quickly calculate this field of concentration of a chemically hazardous substance near the building in the presence of an air curtain. Findings. Numerical models for calculating the aerodynamics of the air flow and the concentration field near the building when using an air curtain were constructed. They can be used to carry out operational calculations of the size, intensity of pollution zones, which are formed in the atmosphere during the emission of chemicals at industrial sites. The developed numerical models can be implemented on computers of low and medium power, which allows it to be widely used for solving problems in developing an emergency response plan (ERP). For practical application of the developed numerical models, standard input information is required. Authors present the results of a laboratory experiment. Originality. Effective three-dimensional numerical models are proposed for estimating the level of atmospheric air pollution when emission of chemically hazardous substances into the atmosphere and using an air curtain near an industrial building. Models allow you to quickly calculate the effectiveness of the air curtain usage. Practical value. The developed numerical models allow solving applied problems arising in the development of ERP for chemically hazardous objects.


Keywords


chemical pollution of the atmosphere; emergency; numerical simulation

References


Alymov, V. T., & Tarasova, N. P. (2004). Tekhnogennyy risk: Analiz i otsenka: Uchebnoe posobie dlya vuzov. Moscow: Akademkniga. (in Russian)

Biliaiev, N. N., Gunko, E. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)

Biliaiev, N. N., Gunko, E. Y., Kirichenko, P. S., & Muntian, L. Y. (2017). Otsenka tekhnogennogo riska pri emissii opasnykh veshchestv na zheleznodorozhnom transporte. Krivoy Rog: Kozlov R. A. (in Russian)

Stoetsky, V. F., Golinko, V. I., & Dranishnikov, L. V. (2014). Risk assessment in man-caused accidents. Scientific Bulletin of National Mining University, 3, 117-124. (in Russian)

Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Biliaiev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kyiv: Naukova dumka. (in Russian)

Bai, Y. (2017). Grey Mathematics Model for Atmospheric Pollution Based on Numerical Simulation. Chemical Engineering Transactions, 71, 679-684. (in English)

Barret, A. M. (2009). Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectivness. (Doctoral dissertation). Carnegie Mellon University, Pittsburg, Pennsylvania. (in English)

Berlov, O. V. (2016). Atmosphere protection in case of emergency during transportation of dangerous cargo. Sciance and Transport Progress, 1(61), 48-54. doi: http://doi.org/10.15802/stp2016/60953 (in English)

Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security. Dordrecht. doi: http://doi.org/10.1007/978-94-007-1359-8_15 (in English)

Cefic Guidance on safety Risk Assessment for Chemical Transport Operations. Croner-i. Retrieved from http://clc.am/OnkmUw (in English)

Naserzadeh, Z., Atabi, F., Moattar, F., & Nejad, N. M. (2017). Effect of barriers on the status of atmospheric pollution by mathematical modeling. Bioscience Biotechnology Research Communications, 10(1), 192-204. (in English)

Oyjinda, P., & Pochai, N. (2017). Numerical Simulation to Air Pollution Emission Control near an Industrial Zone. Advances in Mathematical Physics, 2017. Retrieved from https://www.hindawi.com/journals/amp/2017/5287132/ doi: http://doi.org/10.1155/2017/5287132 (in English)

Government of Alberta. (2017). Protective Action Criteria: A Review of Their Derivation, Use, Advantages and Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrieved from http://open.alberta.ca/publications/9781460131213 (in English)

Zavila, О., Dobes, Р., Dlabka, J., & Bitta, J. (2015). The analysis of the use of mathematical modeling for emergency planning purposes. The Science for Population Protection, 2. Retrieved from http://www.population-protection.eu/prilohy/casopis/eng/22/112.pdf (in English)


GOST Style Citations


  1. Алымов, В. Т. Техногенный риск: Анализ и оценка : учеб. пособие для вузов / В. Т. Алымов, Н. П. Тарасова. – Москва : Академкнига, 2004. – 118 с.
  2. Беляев, Н. Н. Защита зданий от проникновения в них опасных веществ : монография / Н. Н. Беляев, Е. Ю. Гунько, Н. В. Росточило. – Днепропетровск : Акцент ПП, 2014. – 136 с.
  3. Оценка техногенного риска при эмиссии опасных веществ на железнодорожном транспорте / Н. Н. Беляев, Е. Ю. Гунько, П. С. Кириченко, Л. Я. Мунтян. – Кривой Рог : Р. А. Козлов, 2017. – 127 с.
  4. Стоецкий, В. Ф. Оценка риска при авариях техногенного характера / В. Ф. Стоецкий, В. И. Голинько, Л. В. Дранишников // Наук. вісн. НГУ. – 2014. – № 3. – С. 117–124.
  5. Численное моделирование распространения загрязнения в окружающей среде / М. З. Згуровский, В. В. Скопецкий, В. К. Хрущ, Н. Н. Беляев. – Киев : Наук. думка, 1997. – 368 с.
  6. Bai, Y. Grey Mathematics Model for Atmospheric Pollution Based on Numerical Simulation / Y. Bai // Chemical Engineering Transactions. – 2018. – Vol. 71. – P. 679–684. doi: http://doi.org/10.3303/CET1871114
  7. Barret, A. M. Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectiveness : Degree of Doctor of Philosophy / Anthony Michael Barret ; Carnegie Mellon University. – Pittsburg, Pennsylvania, 2009. – 123 p.
  8. Berlov, O. V. Atmosphere protection in case of emergency during transportation of dangerous cargo / O. V. Berlov // Наука та прогрес транспорту. – 2016. – № 1 (61). – С. 48–54. doi: http://doi.org/10.15802/stp2016/60953
  9. Biliaiev, M. M. Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography / M. M. Biliaiev, M. M. Kharytonov // NATO Science for Peace and Security. Series C: Environmental Security. – Dordrecht, 2012. – P. 87–91. doi: http://doi.org/10.1007/978-94-007-1359-8_15
  10. Cefic Guidance on safety Risk Assessment for Chemical Transport Operations [Электронный ресурс] / Croner-i. – Режим доступа: http://clc.am/OnkmUw – Загл. с экрана. – Проверено : 29.03.2019.
  11. Effect of barriers on the status of atmospheric pollution by mathematical modeling / Z. Naserzadeh, F. Atabi, F. Moattar, N. M. Nejad // Bioscience Biotechnology Research Communications. – 2017. – Vol. 10 (1). – P. 192–204.
  12. Oyjinda, P. Numerical Simulation to Air Pollution Emission Control near an Industrial Zone [Электронный ресурс] / P. Oyjinda, N. Pochai // Advances in Mathematical Physics. – 2017. – Vol. 2017. – Режим доступа: https://www.hindawi.com/journals/amp/2017/5287132/ – Загл. с экрана. – Проверено : 23.04.2019. doi: http://doi.org/10.1155/2017/5287132
  13. Protective Action Criteria. A Review of Their Derivation, Use, Advantages and Limitations [Электронный ресурс] // Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. – Edmonton, Alberta, 2017. – Режим доступа: http://open.alberta.ca/publications/9781460131213 – Загл. с экрана. – Проверено : 23.04.2019.
  14. The analysis of the use of mathematical modeling for emergency planning purposes [Электронный ресурс] / O. Zavila, P. Dobes, J. Dlabka, J. Bitta // The science for population protection. – 2015. – № 2. – Режим доступа: http://www.population-protection.eu/prilohy/casopis/eng/22/112.pdf – Загл. с экрана. – Проверено : 23.04.2019.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)