ATMOSPHERE PROTECTION FROM POLLUTION IN ACCIDENTAL SITUATIONS AT CHEMICALLY HAZARDOUS OBJECTS

Authors

DOI:

https://doi.org/10.15802/stp2019/170017

Keywords:

chemical pollution of the atmosphere, emergency, numerical simulation

Abstract

Purpose. The work involves the development of numerical models to assess the effectiveness of the air curtain usage near the building in the event of chemical pollution. Methodology. To describe the process of dispersion of a chemically hazardous substance, emitted in emergency situations, the three-dimensional equation of impurity mass transfer in atmospheric air is used. To calculate the air velocity field near the building in the presence of an air curtain, a potential-flow model is used. The modelling equations take into account the velocity field of the wind flow, atmospheric diffusion, and the intensity of the emission of a chemically hazardous substance into the atmosphere. For the numerical integration of the mass transfer equations, implicit difference schemes are used. The complex of programs was created to solve the problem of calculating pollution zones near buildings in the presence of an air curtain. The application of the developed model allows you to quickly calculate this field of concentration of a chemically hazardous substance near the building in the presence of an air curtain. Findings. Numerical models for calculating the aerodynamics of the air flow and the concentration field near the building when using an air curtain were constructed. They can be used to carry out operational calculations of the size, intensity of pollution zones, which are formed in the atmosphere during the emission of chemicals at industrial sites. The developed numerical models can be implemented on computers of low and medium power, which allows it to be widely used for solving problems in developing an emergency response plan (ERP). For practical application of the developed numerical models, standard input information is required. Authors present the results of a laboratory experiment. Originality. Effective three-dimensional numerical models are proposed for estimating the level of atmospheric air pollution when emission of chemically hazardous substances into the atmosphere and using an air curtain near an industrial building. Models allow you to quickly calculate the effectiveness of the air curtain usage. Practical value. The developed numerical models allow solving applied problems arising in the development of ERP for chemically hazardous objects.

Author Biographies

M. M. Biliaiev, Dniprо National University of Railway Transport named after Academician V. Lazaryan

Dep. «Hydraulics and Water Supply», Dniprо National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 273 15 09, e-mail water.supply.treatment@gmail.com

I. V. Kalashnikov, Kharkiv Branch Office «Design and Research Institute of Railway Transport» of the Public Joint Stock Company «Ukrainian Railway»

Kharkiv Branch Office «Design and Research Institute of Railway Transport» of the Public Joint Stock Company «Ukrainian Railway», Kotliar St., 7, Kharkiv, 61052, tel. +38 (057) 724 41 25, e-mail uzp38@ukr.net

V. I. Shynkarenko, Dnipro National University of Railway Transport named after academician V. Lazaryan

Dep. «Computer and Information Technologies», Dnipro National University of Railway Transport named after academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 15 35, e-mail shinkarenko_vi@ua.fm

V. M. Horiachkin, Dnipro National University of Railway Transport named after Academician V. Lazaryan

Dep. «Heat Engineering», Dnipro National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 15 87, e-mail vgora@ukr.net

References

Alymov, V. T., & Tarasova, N. P. (2004). Tekhnogennyy risk: Analiz i otsenka: Uchebnoe posobie dlya vuzov. Moscow: Akademkniga. (in Russian)

Biliaiev, N. N., Gunko, E. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)

Biliaiev, N. N., Gunko, E. Y., Kirichenko, P. S., & Muntian, L. Y. (2017). Otsenka tekhnogennogo riska pri emissii opasnykh veshchestv na zheleznodorozhnom transporte. Krivoy Rog: Kozlov R. A. (in Russian)

Stoetsky, V. F., Golinko, V. I., & Dranishnikov, L. V. (2014). Risk assessment in man-caused accidents. Scientific Bulletin of National Mining University, 3, 117-124. (in Russian)

Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Biliaiev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kyiv: Naukova dumka. (in Russian)

Bai, Y. (2017). Grey Mathematics Model for Atmospheric Pollution Based on Numerical Simulation. Chemical Engineering Transactions, 71, 679-684. (in English)

Barret, A. M. (2009). Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectivness. (Doctoral dissertation). Carnegie Mellon University, Pittsburg, Pennsylvania. (in English)

Berlov, O. V. (2016). Atmosphere protection in case of emergency during transportation of dangerous cargo. Sciance and Transport Progress, 1(61), 48-54. doi: http://doi.org/10.15802/stp2016/60953 (in English)

Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security. Dordrecht. doi: http://doi.org/10.1007/978-94-007-1359-8_15 (in English)

Cefic Guidance on safety Risk Assessment for Chemical Transport Operations. Croner-i. Retrieved from http://clc.am/OnkmUw (in English)

Naserzadeh, Z., Atabi, F., Moattar, F., & Nejad, N. M. (2017). Effect of barriers on the status of atmospheric pollution by mathematical modeling. Bioscience Biotechnology Research Communications, 10(1), 192-204. (in English)

Oyjinda, P., & Pochai, N. (2017). Numerical Simulation to Air Pollution Emission Control near an Industrial Zone. Advances in Mathematical Physics, 2017. Retrieved from https://www.hindawi.com/journals/amp/2017/5287132/ doi: http://doi.org/10.1155/2017/5287132 (in English)

Government of Alberta. (2017). Protective Action Criteria: A Review of Their Derivation, Use, Advantages and Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrieved from http://open.alberta.ca/publications/9781460131213 (in English)

Zavila, О., Dobes, Р., Dlabka, J., & Bitta, J. (2015). The analysis of the use of mathematical modeling for emergency planning purposes. The Science for Population Protection, 2. Retrieved from http://www.population-protection.eu/prilohy/casopis/eng/22/112.pdf (in English)

Published

2019-06-11

How to Cite

Biliaiev, M. M., Kalashnikov, I. V., Shynkarenko, V. I., & Horiachkin, V. M. (2019). ATMOSPHERE PROTECTION FROM POLLUTION IN ACCIDENTAL SITUATIONS AT CHEMICALLY HAZARDOUS OBJECTS. Science and Transport Progress, (3(81), 7–15. https://doi.org/10.15802/stp2019/170017

Issue

Section

ECOLOGY AND INDUSTRIAL SAFETY