DOI: https://doi.org/10.15802/stp2019/171311

MODELING OF LOADING AND ANALYSIS OF THE STRESS-STRAIN STATE OF PORTAL CRANE GANTRY ELEMENT

Y. H. Sahirov, V. V. Suglobov

Abstract


Purpose. The main purpose of this work is to simulate the gantry loading during operation of the Azovets portal crane, the analysis of the actual stress-strain state of the gantry metal structure elements. The object of the study is the pattern of stress distribution in the gantry elements. Methodology. To achieve this purpose the following methods were used: analytical engineering calculations, simulation modeling, finite elements, and visual-optical method for examining the state of the crane metal structure. Findings. The loaded state of the metal structure of the portal crane was modeled with the use of the CAD/CAE system and its strength was calculated by the finite element me-thod. The results of calculations and analysis of the stress-strain state are given. The obtained regularity of stress distribution in the pillar elements clearly showed that the stresses are unevenly distributed. The stress-strain state of the portal elements is rather complicated, uneven and requires modernization. Originality. The existing methods for the metal structures design of portal cranes were further developed. For the first time, a methodology of designing rational metal structures according to the criteria of uniform stress distribution and smoothness of the power flow was proposed. For the first time, the criteria for assessing the uniformity of stress distribution and smoothness of power flow scientifically substantiated. For the first time, solid-state models of the portal crane metal structure were developed, which allow determining the pattern of stress/load distribution and smoothness of the power flow in them. Practical value. A spatial solid-state computer model of the Azovets portal crane and a methodology for strength analysis and rational design of the metal structure for portal cranes were developed and implemented. The recommendations for repair and strengthening of the gantry components of the Azovets portal crane were scientifically grounded. The results of theoretical and practical research are used in the State Higher Educational Institution «PSTU» in teaching the courses «Designing Metal Structures LTM», «Basics of Computer Aided Design of Machines», «Automated Designing LTM», «Repair, Installation and Lubricants LTM»


Keywords


metal construction; portal crane; modelling; workload; finite element method; synthesis, optimization

References


Androshchuk, Н. О. (2017). Additive Technology: Prospects and Challenges 3d-Print. Science, Technologies, Innovations, 1, 68-77. (in Ukrainian)

Sahirov, Y., Suglobov, V., & Kukhar, V. (2018). Modern Condition and Perspectives of Optimization Projection of Metal Constructions of Portal Cranes. Science and production, 19, 59-68. (in Ukrainian)

Sagirov, Y. G. (2012). Utochnennyy metod analiza napryazhenno-deformirovannogo sostoyaniya kolonny portalnogo krana, Peredovye nauchnye razrabotki, Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya. Praga. (in Russian)

Gokhberg, M. M. (Ed). (1988). Spravochnik po kranam (Vol. 1-2). Leningrad: Mashinostroenie. (in Russian)

Bendsøe, M. P., & Sigmund, O. (2004). Topology Optimization: Theory, Methods, and Applications. Berlin; Heidelberg: Springer-Verlag. doi: https://doi.org/10.1007/978-3-662-05086-6 (in English)

Boyd, S. (2010). Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and Trends® in Machine Learning, 3(1), 1-122. doi: https://doi.org/10.1561/2200000016 (in English)

Caterpillar opens 3D Printing & Innovation Accelerator at Illinois HQ. Identify3D. Retrieved from https://identify3d.com/blog/caterpillar-opens-3d-printing-innovation-accelerator-at-illinois-hq/ (in English)

Deng, S., & Suresh, K. (2014). Multi-constrained topology optimization via the topological sensitivity. Structural and Multidisciplinary Optimization, 51(5), 987-1001. doi: https://doi.org/10.1007/s00158-014-1188-6 (in English)

Fu, J., Li, H., Gao, L., & Xiao, M. (2019). Design of shell-infill structures by a multiscale level set topology optimization method. Computers & Structures, 212, 162-172. doi: https://doi.org/10.1016/j.compstruc.2018.10.006 (in English)

Grierson, D. E., & Khajehpour, S. (2002). Conceptual design optimization of engineering structures. In S. Burns (Ed.), Recent advances in optimal structural design. Reston, VA: American Society of Civil Engineers, 81-95. (in English)

Wu, Z., Xia, L., Wang, S., & Shi, T. (2019). Topology optimization of hierarchical lattice structures with substructuring. Computer Methods in Applied Mechanics and Engineering, 345, 602-617. doi: https://doi.org/10.1016/j.cma.2018.11.003 (in English)

Wohlers, T. (2014). Additive manufacturing and 3D-printing state of the industry: Annual world-wide progress report. Wohlers Associates. Retrieved from https://wohlersassociates.com/2014-ExSum.pdf (in English)

5 things every manufacturer needs to know about 3d printing. Association of Equipment Manufacturers. Retrieved from https://www.aem.org/news/february-2018/5-things-every-manufacturer-needs-to-know-about-3d-printing/ (in English)


GOST Style Citations


  1. Андрощук, Г. О. Адитивні технології: перспективи і проблеми 3D-друку / Г. О. Андрощук // Наука, технології, інновації. – 2017. – № 1. – С. 68–77.
  2. Сагіров, Ю. Г. Сучасний стан та перспективи оптимізації проектування металоконструкцій портальних кранів / Ю. Г. Сагіров, В. В. Суглобов, В. В. Кухар // Наука та виробництво : міжвуз. темат. зб. наук. пр. – Маріуполь, 2018. – Вип. 19. – С. 59–68.
  3. Сагиров, Ю. Г. Уточненный метод анализа напряженно-деформированного состояния колонны портального крана / Ю. Г. Сагиров // Передовые научные разработки : Междунар. науч.-техн. конф. (Прага, 27 авг.–05 сент. 2012 г.). – Прага, 2012. – Т. 11 : Технические науки. Технология и спорт. – С. 38–40.
  4. Справочник по кранам : в 2 т. / под общ. ред. М. М. Гохберга. – Ленинград : Машиностроение, 1988. – 2 т.
  5. Bendsøe, M. P. Topology Optimization: Theory, Methods and Applications / M. P. Bendsøe, O. Sigmund. – Berlin ; Heidelberg : Springer-Verlag, 2004. – 370 р. doi: https://doi.org/10.1007/978-3-662-05086-6
  6. Boyd, S. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers / S. Boyd // Foundations and Trends® in Machine Learning. – 2010. – Vol. 3. – Iss. 1. – P. 1–122. doi: https://doi.org/10.1561/2200000016
  7. Caterpillar opens 3D Printing & Innovation Accelerator at Illinois HQ [Електронний ресурс] / Identify3D. – – Режим доступу: https://identify3d.com/blog/caterpillar-opens-3d-printing-innovation-accelerator-at-illinois-hq/ – Назва з екрана. – Перевірено : 05.06.2019.
  8. Deng, S. Multi-constrained topology optimization via the topological sensitivity / S. Deng, K. Suresh // Structural and Multidisciplinary Optimization. – 2015. – Vol. 51. – Iss. 5. – С. 987–1001. doi: https://doi.org/10.1007/s00158-014-1188-6
  9. Design of shell-infill structures by a multiscale level set topology optimization method / Junjian Fu, Hao Li, Liang Gao, Mi Xiao // Computers & Structures. – 2019. – Vol. 212. – P. 162–172. doi: https://doi.org/10.1016/j.compstruc.2018.10.006
  10. Grierson, D. E. Conceptual design optimization of engineering structures / D. E. Grierson, S. Khajehpour // Recent advances in optimal structural design / S. A. Burns (Ed.). – Reston, VA : American Society of Civil Engineers, 2002. – P. 81–96.
  11. Topology optimization of hierarchical lattice structures with substructuring / Zijun Wu, Liang Xia, Shuting Wang, Tielin Shi // Computer Methods in Applied Mechanics and Engineering. – 2018. – Vol. 345. – P. 345–602. doi: https://doi.org/10.1016/j.cma.2018.11.003
  12. Wohlers, T. Additive manufacturing and 3D-printing state of the industry: Annual world-wide progress report [Електронний ресурс] / Т. Wohlers. – Wohlers Associates, 2014. – 276 p. – Режим доступу: https://wohlersassociates.com/2014-ExSum.pdf – Назва з екрана. – Перевірено : 05.06.2019.
  13. 5 things every manufacturer needs to know about 3d printing [Електронний ресурс] / Association of Equipment Manufacturers. – Режим доступу: https://www.aem.org/news/february-2018/5-things-every-manufacturer-needs-to-know-about-3d-printing/ – Назва з екрана. – Перевірено : 05.06.2019.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)