SPECIFIC EVALUATION METHODOLOGY OF RAILWAY BALLAST PARTICLES’ DEGRADATION

Authors

DOI:

https://doi.org/10.15802/stp2019/171778

Keywords:

individual laboratory test method, railway ballast material, particle degradation, breakage, dynamic fatigue test, static pressing test, CT equipment, 3-D image analysis

Abstract

Purpose. The most railway lines in the world have so called traditional ballasted superstructure. The authors think that it is important to learn about the process of ballast degradation. There are only two types of standardized laboratory test methods in the EU to assess railway ballast particle degradation and describe the rock physic characteristics, but are not suitable for modelling the railway stress-strain circumstances of ballast materials, and they particles. In this paper the authors represent some conclusions from their research that the authors experienced during their individual fatigue laboratory test and from new additional tests. With these kind of testing methods, the deterioration process of railway ballast particles can be assessed more realistic and precisely. Methodology and new directions. There are two types of laboratory tests which are presented in this article. The first one was performed by using a shear box with a special layer structure that is loaded by dynamic, pulsating force; while the second one was executed by using a 140 mm diameter HDPE tube with its original closing element that is loaded by ZD-40 machine. Findings and problems. There is a development after the R&D work made and published in 2014, in 2017 and 2018 years the ballast particle deterioration process is given according to more intermediate fatigue cycles with individual measurements that show more precise «picture» about the full particle degradation, i.e. breakage process. The authors give more accurate correlation functions between the calculated parameters and load cycles during fatigue. However, there are many factors in the test that need to be improved in the future. Therefore, the authors have discovered other additional tests. Originality. The most important goal of the authors that supplement the currently used regulation with new measurement methods. Practical value The authors’ developed and new methods may serve as a basis for a future instruction or regulation. The publishing of this paper was supported by EFOP 3.6.1-16-2016-00017 project.

Author Biographies

E. Juhasz, Széchenyi István University

Dep. «Transport Infrastructure», Széchenyi István University, Egyetem tér 1., Győr, Hungary, 9026, tel. + 36 (96) 613 544,
e-mail juhasz.erika@sze.hu

S. Fischer, Széchenyi István University

Dep. «Transport Infrastructure», Széchenyi István University, Egyetem tér 1., Győr, Hungary, 9026, tel. + 36 (96) 613 544,
e-mail fischersz@sze.hu

References

Kurhan, D. M. (2015). To the solution of problems about the railways calculation for strength taking into account unequal elasticity of the subrail base. Science and Transport Progress, 1(55), 90-99. doi: https://doi.org/10.15802/stp2015/38250 (in Ukrainian)

Ágh, Cs. (2018). A new arrangement of accelerometers on track inspection car FMK-007 for evaluating derailment safety, Track Maintenance Machines in Theory and Practice, SETRAS 2018. Žilina. (in English)

Ágh, Cs. (2012). Egyenértékű kúposság mérése Magyarországon: Pálya és jármű kapcsolata – futási instabilitás. Sínek világa, 54(6), 10-13. (in Hungarian)

Ágh, Cs. (2018). Vágánygeometriai irány- és fekszinthibák valós nagyságának értékelése húrmérési eredmények alapján. Közlekedéstudományi szemle, 68(5), 46-55. (in Hungarian)

Ágh, Cs. (2017). Vasúti kerékpár futási instabilitása a pályadiagnosztika szemszögéből. Sínek világa, 59(6), 17-20. (in Hungarian)

Al-Saoudi, N. K. S., & Hassan, K. H. (2013). Behaviour of Track Ballast under Repeated Loading. Geotechnical and Geological Engineering, 32(1), 167-178. doi: https://doi.org/10.1007/s10706-013-9701-z (in English)

Kozma, I., Zsoldos, I., Dorogi, G., & Papp, S. (2015). Application of Computed Tomography in Structure Analyses of Metal Matrix Syntactic Foams. International Journal of Computer Theory and Engineering, 7(5), 379-382. doi: https://doi.org/10.7763/ijcte.2015.v7.989 (in English)

Arangie, P. B. D. (1997). The influence of ballast fouling on the resilient behaviour of the ballast pavement layer, 6th International Heavy Haul Railway Conference, IHHA 1997. Cape Town, South Africa. (in English)

Claisse, P., & Calla, C. (2006). Rail ballast: conclusions from a historical perspective. Proceedings of the Institution of Civil Engineers - Transport, 159(2), 69-74. doi: https://doi.org/10.1680/tran.2006.159.2.69 (in English)

Kozma, I., Zsoldos, I., Dorogi, G., & Papp, S. (2014). Computer tomography based reconstruction of metal matrix syntactic foams. Periodica Polytechnica Mechanical Engineering, 58(2), 87-91. doi: https://doi.org/10.3311/ppme.7337 (in English)

Kozma, I., Zsoldos, I., Dorogi, G., & Papp, S. (2016). Ct-Based Reconstruction of Metal Foam Composite Material Reinforced with Ceramic Spherical Shell Structure. International Journal of Materials Engineering and Technology, 15(2-3), 93-107. doi: https://doi.org/10.17654/mt015230093 (in English)

Orosz, A., Tamas, K., Radics, J. P., & Zwierczyk, P. T. (2018). Coupling Finite and Discrete Element Methods Using an Open Source and a Commercial Software, 32nd European Conference on Modelling and Simulation, ECMS 2018. Wilhelmshaven. doi: https://doi.org/10.7148/2018-0399 (in English)

TL DBS 918 061: Technische Lieferbedingungen Gleisschotter. TL DBS 918 061: Technical delivery conditions Railway ballast. (2006). Berlin, 2006/08. (in German)

Douglas, S. C. (2013). Ballast Quality and Breakdown during Transport, 2013 Joint Rail Conference. Knoxville, Tennessee, USA. doi: https://doi.org/10.1115/JRC2013-2553 (in English)

Huang, H., Moaveni, M., Schmidt, S., Tutumluer, E., & Hart, J. M. (2018). Evaluation of Railway Ballast Permeability Using Machine Vision–Based Degradation Analysis. Transportation Research Record: Journal of the Transportation Research Board, 2672(10), 62-73. doi: https://doi.org/10.1177/0361198118790849 (in English)

Fischer, S. (2017). Breakage Test of Railway Ballast Materials with New Laboratory Method. Periodica Polytechnica Civil Engineering, 61(4), 794-802. doi: https://doi.org/10.3311/ppci.8549 (in English)

Fischer, Sz. (2015). Crumbling examination of railway crushed stones by individual laboratory method. Sínek Világa, 57(3), 12-19. (in Hungarian)

Fischer, Sz., & Németh, А. (2018). Individual rock physics investigations of railway ballast materials. Kő-és Kavicsbányász Napok 2018: XI Conference. Velence. Retrieved from https://u.to/YmyyFQ (in Hungarian)

Fischer, Sz., & Németh, А. (2018). Special laboratory test for evaluation breakage (particle degradation) of railway ballast, Conference on Transport Sciences. Győr. Retrieved from https://u.to/84dpFQ (in English)

Juhász, E., & Fischer, Sz. (2019). Individual laboratory test method for railroad ballast particle breakage, Conference on Transport Sciences. Győr. Retrieved from https://u.to/H49pFQ (in English)

Juhász, E., & Fischer, Sz. (2018). Investigation of railway ballast materials’ particle degradation with special laboratory test method, 14th Miklós Iványi PhD & DLA Symposium. Pécs. Retrieved from https://clck.ru/G4KnU (in English)

Khan, S. N. (2018). Numerical analysis of deformation and stability in the formation for railway tracks. (Thesis for Master). Universität Weimar, Weimar. Retrieved from https://u.to/95JuFQ (in English)

Köken, E., Özarslan, A., & Bacak, G. (2018). An experimental investigation on the durability of railway ballast material by magnesium sulfate soundness. Granular Matter, 20(2). doi: https://doi.org/10.1007/s10035-018-0804-3 (in English)

Köken, E., & Özarslan, A. (2018). New testing methodology for the quantification of rock crushability: Compressive crushing value (CCV). International Journal of Minerals, Metallurgy, and Materials, 25(11), 1227-1236. doi: https://doi.org/10.1007/s12613-018-1675-7 (in English)

Kozma, I., Dorogi, G., & Papp, Sz. (2014). Kerámia gömbhéjakkal erősített fémhab kompozitok szerkezetének CT alapú rekonstrukciója. Anyagok világa, XII(1), 60-72. (in Hungarian)

Kozma, I., & Halbritter, E. (2013). Measurement of the diameter of the imprint based on image processing using MathCAD and the avaluation software of an industrial CT. Acta Technica Jaurinensis, 6(2), 45-58. (in English)

Fischer, Sz., Németh, A., Harrach, D., & Juhász, E. (2018). Laboratory fatigue degradation tests of railway ballast materials, 22nd International Conference on Civil Engineering and Architecture, ЕРКО 2018. Sumuleu Ciuc. Retrieved from https://clck.ru/G46U7 (in Hungarian)

Lichtberger, B. (2005). Track compendium: Formation, Permanent Way, Maintenance, Economics. Hamburg: Eurailpress Tetzlaff-Hestra GmbH & Co. (in English)

A 102345/1995 PHMSZ előírás 3. számú módosítása (Modification 3 in MÁV 102345/1995 PHMSZ. ’Railway substructure and ballast quality acceptance regulations instruction’), MÁV (2008). (in Hungarian)

A 102345/1995 PHMSZ előírás 4. számú módosítása. (Modification 4 in MÁV 102345/1995 PHMSZ. ’Railway substructure and ballast quality acceptance regulations instruction’), MÁV (2010). (in Hungarian)

Kamalov, R. S., Ghataora, G. S., Burrow, M. P. N., Wehbi, M., & Musgrave, P. (2017). Migration of fine particles from subgrade soil to the overlying ballast, Railway Engineering Conference. Edinburgh. Retrieved from https://u.to/j6dpFQ (in English)

Moaveni, M., Qian, Y., Qamhia, I. I. A., Tutumluer, E., Basye, C., & Li, D. (2016). Morphological Characterization of Railroad Ballast Degradation Trends in the Field and Laboratory. Transportation Research Record: Journal of the Transportation Research Board, 2545(1), 89-99. doi: https://doi.org/10.3141/2545-10 (in English)

Kőanyaghalmazok mechanikai és fizikai tulajdonságainak vizsgálata. 1. rész: A kopásállóság vizsgálata (mikro-Deval). (Tests for mechanical and physical properties of aggregates. Determination of the resistance to wear (micro-Deval), MSZ EN 1097-1:2012 (2012). (in Hungarian)

Kőanyaghalmazok mechanikai és fizikai tulajdonságainak vizsgálata. 2. rész: Az aprózódással szembeni ellenállás meghatározása. (Tests for mechanical and physical properties of aggregates. Methods for the determination of resistance to fragmentation), MSZ EN 1097-2:2010 (2010). (in Hungarian)

Kőanyaghalmazok geometriai tulajdonságainak vizsgálata. 3. rész: A szemalak meghatározása. Lemezességi szám. MSZ EN 933-3 (2012). (in Hungarian)

Kőanyaghalmazok termikus tulajdonságainak és időjárás-állóságának vizsgálati módszerei. 2. rész: Magnézium-szulfátos eljárás. MSZ EN 1367-2 (2010). (in Hungarian)

Kőanyaghalmazok vasúti ágyazathoz. (Aggregates for railway ballast). MSZ EN 13450:2003 (2003). (in Hungarian)

Nagy, R. (2017). Analytical differences between seven prediction models and the description of the rail track deterioration process through these methods. Intersections, 14(1), 14-32. (in English)

Nagy, R. (2017). Analytical differences between six prediction models and the description of the rail track deterioration process through these methods, Computational Civil Engineering 2017, International Symposium. Iasi. (in English)

Nagy, R. (2016). A vasúti pályageometria romlási folyamatának leírása. Sínek világa, 58(6), 12-18. (in Hungarian)

Nagy, R. (2017). Description of rail track geometry deterioration process in Hungarian rail lines No. 1 and No. 140. Pollack Periodica, 12(3), 141-156. doi: https://doi.org/10.1556/606.2017.12.3.13 (in English)

Nie, Z., Liang, Z., & Wang, X. (2018). A three-dimensional particle roundness evaluation method. Granular Matter, 20(2). doi: https://doi.org/10.1007/s10035-018-0802-5 (in English)

Nimbalkar, S., & Indraratna, B. (2016). Field Assessment of Ballasted Railroads Using Geosynthetics and Shock Mats. Procedia Engineering, 143, 1485-1494. Retrieved from https://u.to/WeVuFQ doi: https://doi.org/10.1016/j.proeng.2016.06.175 (in English)

Orosz, A., Radics, J. P., & Tamas, K. (2017). Calibration of Railway Ballast DEM Model, 31st European Conference on Modelling and Simulation, ECMS 2017. Budapest. doi: https://doi.org/10.7148/2017-0523 (in English)

Orosz, Á., Tamás, K., & Rádics, J. P. (2017). The feasibility of modelling rocks in engineering applications with the use of discrete element method. Hungarian Agricultural Engineering, 32, 51-55. doi: https://doi.org/10.17676/hae.2017.32.51 (in English)

Paiva, C. E. L., Pereira, M. L., & Pimentel, L. L. (2017). Study of Railway Ballast Fouling by Abrasion Originated Particles, Railway Engineering – 2017. Edinburgh. (in English)

Sadeghi, J. M., Zakeri, J. Ali, & Najar, M. E. M. (2016). Developing Track Ballast Characteristic Guideline in Order to Evaluate its Performanc. International Journal of Railway, 9(2), 27-35. doi: https://doi.org/10.7782/IJR.2016.9.2.027 (in English)

Sun, Y., Chen, C., & Nimbalkar, S. (2017). Identification of ballast grading for rail track. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 945-954. doi: https://doi.org/10.1016/j.jrmge.2017.04.006 (in English)

Track ballast in Austria: Parts 1, 2, 3. Rail Infrastructure. Retrieved from https://www.plassertheurer.com/fileadmin/user_upload/Mediathek/Publikationen/ri_12888990.pdf (in English)

Sysyn, M. P., Kovalchuk, V. V., & Jiang, D. (2018). Performance study of the inertial monitoring method for railway turnouts. International Journal of Rail Transportation, 4, 33-42. doi: https://doi.org/10.1080/23248378.2018.1514282 (in English)

Sysyn, M., Gerber, U., Kovalchuk, V., & Nabochenko, O. (2018). The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works. Archives of Transport, 47(3), 91-107. doi: https://doi.org/10.5604/01.3001.0012.6512 (in English)

Kovalchuk, V., Sysyn, M., Sobolevska, J., Nabochenko, O., Parneta, B., & Pentsak, A. (2018). Theoretical study into efficiency of the improved longitudinal profile of frogs at railroad switches. Eastern-European Journal of Enterprise Technologies, 4/1(94), 27-36. doi: https://doi.org/10.15587/1729-4061.2018.139502 (in English)

Downloads

Published

2019-06-27

How to Cite

Juhasz, E., & Fischer, S. (2019). SPECIFIC EVALUATION METHODOLOGY OF RAILWAY BALLAST PARTICLES’ DEGRADATION. Science and Transport Progress, (3(81), 96–109. https://doi.org/10.15802/stp2019/171778

Issue

Section

RAILROAD AND ROADWAY NETWORK