DOI: https://doi.org/10.15802/stp2019/175883

EVALUATION OF THE PERFORMANCE OF AEROTANKS DUE TO ADD-ON ATTACHED BIOCENOSIS

O. Y. Oleynik, T. S. Airapetian, S. M. Kurganska

Abstract


Purpose. The research involves the implementation of comparative calculations to evaluate the performance of aerotanks with add-on attached biocenosis (biofilm). Methodology. For improving the performance of the aerotanks due to the introduction of an additional load with attached biocenosis (biofilm), the authors constructed the mathematical models that consider the simultaneous oxidation of organic pollutants with suspended and attached biocenosis. Based on these models, the methods were developed for calculating clarification parameters. The authors performed evaluation of the influence of various clarification factors in aerotanks. They proved that the clarification intensity is increased due to additional elements with the attached biocenosis. Herewith, possible technological and structural schemes of aerotanks were considered, when the loading elements (nozzles, screens, etc.) are located throughout the whole volume or more densely and compactly only in its individual sections. Findings. The parameters of effluent clarification from organic pollution in the aerotanks are determined using numerical methods. The graphs show the significant performance of aerotanks due to the introduction of the additional load with the attached biocenosis (biofilm). The calculations of the effect of additional loading on the performance of complete-mix aerotanks and continuous-flow aerotanks show that the use of immobilized biocenosis can improve the quality of removal of organic pollutants by 2-5 times. Originality. The authors substantiated scientifically the influence of various factors of wastewater treatment in aerotanks, the efficiency of which is increased due to additional elements with the attached biocenosis. Practical value. The introduction of research results in wastewater treatment plants can significantly improve the quality of the removal of organic pollutants by biological methods. The implementation of the calculation methods for the proposed dependencies makes it possible to more fully and reasonably take into account important processes that significantly affect the utilization of organic pollutants and the efficiency of the aerotanks with the additional involvement of wastewater treatment by the attached biocenosis.


Keywords


aerotanks-reactors; attached biocenosis (biomass); biofilm, active sludge; clarification reactions

References


Vasylenko, O. A., Epoian, C. M., Smirnova, H. M., Korinko, I. V., Vasylenko, L. O., & Airapetian, T. S. (2012). Vodovidvedennia ta ochystka stichnykh vod mista. Kursove i dyplomne proektuvannia. Pryklady ta rozrakhunky: Navchalnyi posibnyk. Kyiv: KNUBA; Kharkiv: KhNUBA; Ekskliuzyv. (in Ukrainian)

Voronov, Y. V. (2009). Vodootvedenie i ochistka stochnykh vod: uchebnik dlya vuzov. Moskow: ASV. (in Russian)

Kanalizatsiia. Zovnishni merezhi ta sporudy. Osnovni polozhennia proektuvannia, 128 DBN V.2.5-75-2013 (2013). (in Ukrainian)

Hrytsyna, O. O., Yesin, M. A., Zhukova, V. S., Bliashyna, M. V., & Voloshchuk, V. A. (2018). Doslidzhennia protsesiv ochyshchennia stichnykh vod vid biohennykh elementiv ta utylizatsii enerhetychnoho potentsialu stichnykh vod: Monohrafiia. Rivne: Natsionalnyi universytet vodnoho hospodarstva ta pryrodokorystuvannia. (in Ukrainian)

Zhmur, N. S. (2003). Tekhnologicheskie i biokhimicheskie protsessy ochistki stochnykh vod na so-oruzheniyakh s aerotenkami. Moskow: AKVAROS. (in Russian)

Shevchenko, O. O., Krupko, V. A., Klintsov, L. M., & Ivanova, I. M. (2014). Modeliuvannia efektyvnosti roboty stantsii biolohichnoho ochyshchennia stichnykh vod. Eastern-European Journal of Enterprise Technologies, 5/10(71), 16-20. (in Ukrainian)

Oleynik, A. Y., & Airapetyan, T. S. (2015). The modeling of the clearance of waste waters from organic pollutions in bioreactors-aerotanks with suspended (free flow) and fixed biocenoses. Reports of the National Academy of the Sciences of the Ukraine, 5, 55-60. doi: http://doi.org/10.15407/dopovidi2015.05.055 (in Ukrainian)

Oleynik, A. Y., & Airapetyan, T. S. (2016). Pidvyshchennia efektyvnosti roboty aerotenkiv-vytyskuvachiv za rakhunok zavysloho i zvazhenoho biotsenozu. Problemy vodopostachannia, vodovidvedennia ta hidravliky, 26, 123-130. (in Ukrainian)

Oleynik, A. Y., & Kolpakova, O. A. (2014). Modelling and calculation of bioiligical wastewater treatment to trickling biofilters. Environmental safety and natural resources, 16, 68-86. (in Ukrainian)

Oleynik, A. Y., & Ayrapetyan, T. S. (2015). Povyshenie effektivnosti raboty aerotenkov. Bulletin of Odessa state academy of civil engineering and architecture: collection of scientific works, 59, 216-224. (in Russian)

Biliaiev, M. M., & Lemesh, M. V. (2018). Modeling of biological wastewater treatment on the basis of quick-computing numerical model. Science and Transport Progress, 1(73), 15-23. doi: http://doi.org/10.15802/stp2018/124882 (in English)

Henze, M., Van Loosdrecht, M. C. М., Ekama, G. A., & Brdjanovic, D. (2008). Biological Wastewater Treatment: Principles, Modelling and Design. London: IWA Publishing. (in English)

Gebara, F. (1999). Activated sludge biofilm wastewater treatment system. Water Research, 33(1), 230-238. doi: https://doi.org/10.1016/s0043-1354(98)00210-3 (in English)

Zeng, M., Hu, J., Wang, D., Wang, H., Wang, Y., Wu, N., … Wang, C. (2017). Improving a compact biofilm reactor to realize efficient nitrogen removal performance: step-feed, intermittent aeration, and immobilization technique. Environmental Science and Pollution Research, 25(7), 6240-6250. doi: https://doi.org/10.1007/s11356-017-0935-9 (in English)

Marzec, M. (2017). Reliability of removal of selected pollutants in different technological solutions of household wastewater treatment plants. Journal of Water and Land Development, 35(1), 141-148. doi: https://doi.org/10.1515/jwld-2017-0078 (in English)

Kazadi Mbamba, C., Lindblom, E., Flores-Alsina, X., Tait, S., Anderson, S., Saagi, R., … Jeppsson, U. (2019). Plant-wide model-based analysis of iron dosage strategies for chemical phosphorus removal in wastewater treatment systems. Water Research, 155, 12-25. doi: https://doi.org/10.1016/j.watres.2019.01.048 (in English)

Revilla, M., Galán, B., & Viguri, J. R. (2017). Analysis of simulation tools and optimization of the operational conditions for biofilm activated sludge industrial process. International Journal of Environmental Science and Technology, 15(12), 2499-2510. doi: https://doi.org/10.1007/s13762-017-1626-2 (in English)

Shamsutdinova, Z. R., & Khafizov, I. I. (2016). Analysis of the aerotanks efficiency in wastewater treatment system. Proceedings of the Voronezh State University of Engineering Technologies, 4, 245-249. doi: https://doi.org/10.20914/2310-1202-2016-4-245-249 (in English)

Shreve, M. J., & Brennan, R. A. (2019). Trace organic contaminant removal in six full-scale integrated fixed-film activated sludge (IFAS) systems treating municipal wastewater. Water Research, 151, 318-331. doi: https://doi.org/10.1016/j.watres.2018.12.042 (in English)

Balkhair, K. S., Masood, A., Almazroui, M., Rahman, K. U., Bamaga, O. A., Kamis, A. S., … Hesham, K. (2018). Groundwater share quantification through flood hydrographs simulation using two temporal rainfall distributions. Desalination and Water Treatment, 114, 109-119. doi: https://doi.org/10.5004/dwt.2018.22346 (in English)

Chen, H., Liu, S., Yang, F., Xue, Y., & Wang, T. (2009). The development of simultaneous partial ni-trification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bio-resource Technology, 100(4), 1548-1554. doi: https://doi.org/10.1016/j.biortech.2008.09.003 (in English)

Markevich, R. M., Rymovskaya, M. V., Grebenchikova, I. A., Flyurik, E. A., & Dziuba, I. P. (2011). The transformation of nitrogen and phosphorus compounds during biological treatment at the minsk treatment plant. In S. D. Varfolomeev, G. E. Zaikov, L. P. Krylova (Eds.), Biotechnology and the Ecology of Big Cities. Minsk: Nova Science Publishers. (in English)

Von Sperling, М. (2007). Biological wastewater treatment series. Vol. 5: Activated sludge and aerobic biofilm reactors. London: IWA Publishing. (in English)


GOST Style Citations


  1. Водовідведення та очистка стічних вод міста. Курсове і дипломне проектування. Приклади та розрахунки : навч. посіб. / О. А. Василенко, С. М. Епоян, Г. М. Смірнова [та ін.]. – Київ : КНУБА ; Харків : ХНУБА : Ексклюзив, 2012. – 538 с.
  2. Воронов, Ю. В. Водоотведение и очистка сточных вод : учебник для вузов / Ю. В. Воронов. – Москва : АСВ, 2009. – 760 с.
  3. ДБН В.2.5-75-2013. Каналізація. Зовнішні мережі та споруди. Основні положення проектування. – Київ : Мінрегіон України, 2013. – 128 с.
  4. Дослідження процесів очищення стічних вод від біогенних елементів та утилізації енергетичного потенціалу стічних вод : монографія / О. О. Грицина, М. А. Єсін, В. С. Жукова [та ін.]. – Рівне : Нац. ун-т водн. госп-ва та природокористування, 2018. – 268 с.
  5. Жмур, Н. С. Технологические и биохимические процессы очистки сточных вод на сооружениях с аеротенками / Н. С. Жмур. – Москва : АКВАРОС, 2003. – 507 с.
  6. Моделювання ефективності роботи станції біологічного очищення стічних вод / О. О. Шевченко, В. А. Крупко, Л. М. Клінцов, І. М. Іванова // Восточно-Европейский журнал передовых технологий. – 2014. – № 5/10 (71). – С. 16–20.
  7. Олійник О. Я. Моделювання очистки стічних вод від органічних забруднень в біореакторах-аеротенках зі зваженим (вільно плаваючим) і закріпленим біоценозом / О. Я. Олійник, Т. С. Айрапетян // Доповіді НАН України. – 2015. – № 5. – С. 55–60. doi: http://doi.org/10.15407/dopovidi2015.05.055
  8. Олійник, О. Я. Підвищення ефективності роботи аеротенків-витискувачів за рахунок завислого і зваженого біоценозу / О. Я. Олійник, Т. С. Айрапетян // Проблеми водопостачання, водовідведення та гідравліки : наук.-техн. зб. – Київ, 2016. – Вип. 26. – С. 123–130.
  9. Олійник, О. Я. Моделювання і розрахунки біологічної очистки стічних вод на краплинних біофільтрах / О. Я. Олійник, О. А. Колпакова // Екологічна безпека та природокористування : зб. наук.-техн. пр. – Київ, 2014. – Вип. 16. – С. 68–86.
  10. Олейник, А. Я. Повышение эффективности работы аеротенков / А. Я. Олейник, Т. С. Айрапетян // Вісн. Одес. держ. акад. буд-ва та архітектури : зб. наук. пр. – Одеса, 2015. – Вип. 59. – С. 216–224.
  11. Biliaev, M. M. Modeling of biological wastewater treatment on the basis of quick-computing numerical model / М. М. Biliaev, M. V. Lemesh // Наука та прогрес транспорту. – 2018. – № 1 (73). – С. 15–23. doi: http://doi.org/10.15802/stp2018/124882
  12. Biological Wastewater Treatment: Principles, Modelling and Design / M. Henze, M. C. M. van Loosdrecht, G. A. Ekama, D. Brdjanovic. – London : IWA Publishing, 2008. – 511 p.
  13. Gebara, F. Activated sludge biofilm waste water treatment system / F. Gebara // Water Research. – 1999. – Vol. 33. – Iss. 1. – Р. 230–238. doi: https://doi.org/10.1016/s0043-1354(98)00210-3
  14. Improving a compact biofilm reactor to realize efficient nitrogen removal performance: step-feed, intermittent aeration, and immobilization technique / M. Zeng, J. Hu, D. Wang [et al.] // Environmental Science and Pollution Researchю. – 2018. – Vol. 25. – Iss. 7. – P. 6240–6250. doi: https://doi.org/10.1007/s11356-017-0935-9 
  15. Marzec, M. Reliability of removal of selected pollutants in different technological solutions of household wastewater treatment plants / M. Marzec // Journal of Water and Land Development. – 2017. – Vol. 35. – Iss. 1. – P. 141–148. doi: https://doi.org/10.1515/jwld-2017-0078
  16. Plant-wide model-based analysis of iron dosage strategies for chemical phosphorus removal in wastewater treatment systems / C. Kazadi Mbamba, E. Lindblom, X. Flores-Alsina [et al.] // Water Research. – 2019. – Vol. 155. – P. 12–25. doi: https://doi.org/10.1016/j.watres.2019.01.048
  17. Revilla, M. Analysis of simulation tools and optimization of the operational conditions for biofilm activated sludge industrial process / M. Revilla, B. Galán, J. R. Viguri // International Journal of Environmental Science and Technology. – 2018. – Vol. 15. – Iss. 12. – P. 2499–2510.
    doi: https://doi.org/10.1007/s13762-017-1626-2 
  18. Shamsutdinova, Z. R. Analysis of the aerotanks efficiency in wastewater treatment system / Z. R. Shamsutdinova, I. I. Khafizov // Proceedings of the Voronezh State University of Engi-neering Technologies. – 2016. – Іss. 4. – Р. 245–249. doi: https://doi.org/10.20914/2310-1202-2016-4-245-249
  19. Shreve, M. J. Trace organic contaminant removal in six full-scale integrated fixed-film activated sludge (IFAS) systems treating municipal wastewater / M. J. Shreve, R. A. Brennan // Water Research. – 2019. – Vol. 151. – P. 318–331. doi: https://doi.org/10.1016/j.watres.2018.12.042 
  20. Groundwater share quantification through flood hydrographs simulation using two temporal rainfall distributions / K. S. Balkhair, A. Masood, M. Almazroui [et al.] // Desalination and Water Treatment. – 2018. – Vol. 114. – Р. 109–119. doi: ttps://doi.org/10.5004/dwt.2018.22346 
  21. The development of simultaneous partial nitrification, ANAMOX and denitrification process in a single reactor for nitrogen removal / H. Chen, S. Liu, F. Yang, Y. Xue, T. Wang // Bioresource Technology. – 2009. – Vol. 100. – Iss. 4. – P. 1548–1554. doi: https://doi.org/10.1016/j.biortech.2008.09.003
  22. The transformation of nitrogen and phosphorus compounds during biological treatment at the minsk treatment plant / R. M. Markevich, M. V. Rymovskaya, І. А. Grebenchikova, Е. А. Flyurik, І. Р. Dziuba // Bio-technology and the Ecology of Big Cities / Edited by S. D. Varfolomeev, G. E. Zaikov, L. P. Krylova. – Minsk : Nova Science Publishers, 2011. – P. 53–60.
  23. Von Sperling, M. Biological wastewater treatment series. Vol. 5 : Activated sludge and aerobic biofilm reactors / М. Von Sperling. – London : IWA Publishing, 2007. – 340 р.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)