VECTOR OPTIMIZATION FOR THE TWO INDICATORS

O. O. Bosov, H. M. Kodola, L. M. Savchenko

Abstract


The algorithm of a problem multicriteria optimization decision is offered with using analytical representation Pareto cone.


Keywords


vector optimization; Pareto cone; algorithm

GOST Style Citations


1. Эйлер Л. Об определении движения брошенных тел в несопротивляющейся среде методом максимумов и минимумов: Вариационные принципы механики, под ред. Л. С. Полока. - М: Из-во физико-математической литературы, 1959. - С. 31-40.

2. Васильев Ф. П. Численные методы решения экстремальных задач. - М.: Наука, 1980. - 518 с.

3. И. М. Макаров, Т. М. Виноградская, А. А. Руб-чинский, В. Б. Соколов. Теория выбора и принятия решений. - М.: Наука, 1982. - 327 с.

4. Ногин В. Д. Принятие решений в многокритериальной среде: количественный подход. - М.: Физмат, 2002. - 144 с.

5. С. Mattson, A. Messac. Pareto Frontier Based Con¬cept Selection Under Uncertainty, with Visualization. Springer - Special Issue on Multidisciplinary Design Optimization, Invited (refereed) Paper, OPTE: Optimization and Engineering, Vol. 6, No. 1, March 2005, pp. 85-115. http://www.rpi.edu/ ~messac/Publictions/messac_opte_pareto_con_sel. pdf.

6. S. V. Utyuzhnikov, P. Fantini, M. D. Guenov. A Method for Generating Well-Distributed Pareto Set in Nonlinear Multiobjective Optimization. - 2005. - 28 p. http://arxiv.org/abs/math/0512055.

7. A. Messac, E. Melachrinoudis, C. Sukam. Aggregate Objective Functions and Pareto Frontiers: Required Relationships and Practical Implications. -Optimization and Engineering Journal, Kluwer Publishers, Vol. 1, Issue 2, June 2000, pp. 171-188. http://www.rpi.edu/~messac/Publications/ relation-ships.pdf.

8. Messac, A., and Ismail-Yahaya, A., "Required Relationship between Objective Function and Pareto Frontier Orders: Practical Implications," AIAA Journal, Vol. 39, No. 11, 2001, pp. 2168-2174. http://www.rpi.edu/~messac/PubUcations/j-22.pdf.

9. Messac, A., Sundararaj, G. J., Tappeta, R. V., and Renaud, J. E., "Ability of Objective Functions to Generate Points on Non-Convex Pareto Frontiers," AIAA Journal, Vol. 38, No. 6, June 2000, pp. 1084-1091. http://www.rpi.edu/~messac/Pubhcations/ pareto.pdf.

10. Das, I and Dennis, J. E., "Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems", SIAM Journal of Optimization, Vol. 8, No. 3, 1998, pp. 631-657. http://www.caam.rice. edu/ -indra/Papers/NBIforSIOPT.ps.

11. Messac, A. and Mattson, C. A., "Normal Constraint Method with Guarantee of Even Representation of Complete Pareto Frontier," AIAA J., Vol. 42, No. 10, Oct. 2004, pp. 2101-2111. http://www.rpi.edu/ ~messac/Pubhcations/messac-nc-guarantee-aiaaj.pdf

12. Messac, A., Ismail-Yahaya, A., and Mattson, C.A., "The Normalized Normal Constraint Method for Generating the Pareto Frontier," Structural and Multidisciplinary Optimization, Vol. 25, No. 2, 2003, pp. 86-98. http://www.rpi.edu/~messac/ Pub¬lications/messac_NNC-str_2002.pdf.





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)