DOI: https://doi.org/10.15802/stp2019/178556

COMPUTER MODELING OF AIR POLLUTION IN CASE OF DUST CLOUD MOVEMENT IN OPEN PIT MINE

V. V. Biliaieva, P. S. Kirichenko, O. V. Berlov, V. O. Gabrinets, V. M. Horiachkin

Abstract


Purpose. Explosions in open pits lead to the formation of dust clouds. These clouds lead to intense air pollution. An important task is the development of methods for predicting the dynamics of atmospheric air pollution during explosions in open pits. The purpose of this work is development of a numerical model to predict atmosphere pollution after explosion in open mine pit. The task is to develop a numerical model that would allow for the calculation to take into account the geometrical shape of the open pit mine, the parameters of the meteorological situation (wind speed, atmosphere), the shape of the dust cloud that is formed in the open pit mine at the site of the explosion. Methodology. Mathematical modeling of dust cloud dispersion during an explosion in an open pit mine is based on the use of fundamental equations of aerodynamics and mass transfer. The airflow velocity field in the open pit mine is modeled using the Laplace equation for the velocity potential. The formation of the concentration field of dust is modeled on the basis of the equation of convective-diffusion dispersion of an impurity. For numerical integration of modeling equations, difference schemes are used. The Laplace equation for the velocity potential is numerically integrated using the Richardson method. For the numerical integration of the convective-diffusion dispersion equation for an impurity, an implicit difference splitting scheme is used. Findings. A CFD model has been developed that allows you to calculate the formation of pollution zones during the movement of a dust cloud in the open pit mine. A feature of the developed model is the speed of calculation. For practical use of the developed model, standard input information is required. Originality. In contrast to the existing models in Ukraine, the developed numerical model allows taking into account the geometrical shape of the open pit mine and the geometrical shape of the dust cloud when making predictive calculations to assess the level of air pollution caused by explosions in open pits. Practical value. The developed numerical model can be implemented on computers of low and medium power. For practical use of the numerical model, standard information on meteorological conditions in open pit mine is required. The numerical model can be used for environmental assessment of the effect of explosions in open pit mine on environmental pollution and work areas.


Keywords


dust cloud; open pit mine; atmosphere pollution; computer simulation

Full Text:

PDF HTML

References


Alymov, V. T., & Tarasova, N. P. (2004). Tekhnogennyy risk: Analiz i otsenka: Uchebnoe posobie dlya vuzov. Moscow: Akademkniga. (in Russian)

Biliaiev, N. N., Gunko, E. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)

Beresnevich, P. V., Mikhaylov, V. A., Filatov, S. S. (1991). Aerologtya karerov: spravochnik. Moskva: Nedra. (in Russian)

Biliaiev, N. N., Gunko, E. Y., Kirichenko, P. S., & Muntian, L. Y. (2017). Otsenka tekhnogennogo riska pri emissii opasnykh veshchestv na zheleznodorozhnom transporte. Krivoy Rog: Kozlov R. A. (in Russian)

Stoetsky, V. F., Golinko, V. I., & Dranishnikov, L. V. (2014). Risk assessment in man-caused accidents. Sci-entific Bulletin of National Mining University, 3, 117-124. (in Russian)

Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Biliaiev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kyiv: Naukova dumka. (in Russian)

Alvarez, J. T., Alvarez, I. D., & Lougedo, S. T. (2008). Dust Barriers in Open Pit Blasts. Multiphase Computational Fluid Dynamics (CFD) Simulations. WIT Transactions on Ecology and the Environment. (in English)

Bai, Y. (2017). Grey Mathematics Model for Atmospheric Pollution Based on Numerical Simulation. Chemi-cal Engineering Transactions, 71, 679-684. (in English)

Berlov, O. V. (2016). Atmosphere protection in case of emergency during transportation of dangerous cargo. Science and Transport Progress, 1(61), 48-54. doi: http://doi.org/10.15802/stp2016/60953 (in English)

Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Envi-ronmental Security. Dordrecht. doi: http://doi.org/10.1007/978-94-007-1359-8_15 (in English)

Cefic Guidance on safety Risk Assessment for Chemical Transport Operations. Croner-i. Retrieved from http://clc.am/OnkmUw (in English)

Naserzadeh, Z., Atabi, F., Moattar, F., & Nejad, N. M. (2017). Effect of barriers on the status of atmospheric pollution by mathematical modeling. Bioscience Biotechnology Research Communications, 10(1), 192-204. (in English)

Oyjinda, P., & Pochai, N. (2017). Numerical Simulation to Air Pollution Emission Control near an Industrial Zone. Advances in Mathematical Physics, 2017, 1-7. doi: http://doi.org/10.1155/2017/5287132 (in English)

Government of Alberta. (2017). Protective Action Criteria: A Review of Their Derivation, Use, Advantagesand Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrieved from http://open.alberta.ca/publications/9781460131213 (in English)

Zavila, О., Dobes, Р., Dlabka, J., & Bitta, J. (2015). The analysis of the use of mathematical modeling foremergency planning purposes. The Science for Population Protection, 2. Retrieved from http://www.population-protection.eu/prilohy/casopis/eng/22/112.pdf (in English)


GOST Style Citations


  1. Алымов, В. Т. Техногенный риск: Анализ и оценка : учеб. пособие для вузов / В. Т. Алымов, Н. П. Тарасова. – Москва : Академкнига, 2004. – 118 с.
  2. Беляев, Н. Н. Защита зданий от проникновения в них опасных веществ : монография / Н. Н. Беляев, Е. Ю. Гунько, Н. В. Росточило. – Днепропетровск : Акцент ПП, 2014. – 136 с.
  3. Бересневич, П. В. Аэрология карьеров : справочник / П. В. Бересневич, В. А. Михайлов, С. С. Филатов. – Москва : Недра, 1991. – 280 с.
  4. Оценка техногенного риска при эмиссии опасных веществ на железнодорожном транспорте / Н. Н. Беляев, Е. Ю. Гунько, П. С. Кириченко, Л. Я. Мунтян. – Кривой Рог : Р. А. Козлов, 2017. – 127 с.
  5. Стоецкий, В. Ф. Оценка риска при авариях техногенного характера / В. Ф. Стоецкий, В. И. Голинько, Л. В. Дранишников // Наук. вісн. НГУ. – 2014. – № 3. – С. 117–124.
  6. Численное моделирование распространения загрязнения в окружающей среде / М. З. Згуровский, В. В. Скопецкий, В. К. Хрущ, Н. Н. Беляев. – Киев : Наук. думка, 1997. – 368 с.
  7. Alvarez, J. T. Dust Barriers In Open Pit Blasts. Multiphase Computational Fluid Dynamics (CFD) Simulations / J. T. Alvarez, I. D. Alvarez, S. T. Lougedo // WIT Transactions on Ecology and the Environment. – 2008. – 116 p.
  8. Bai, Y. Grey Mathematics Model for Atmospheric Pollution Based on Numerical Simulation / Y. Bai // Chem-ical Engineering Transactions. – 2018. – Vol. 71. – P. 679–684. doi: http://doi.org/10.3303/CET1871114
  9. Berlov, O. V. Atmosphere protection in case of emergency during transportation of dangerous cargo / O. V. Berlov // Наука та прогрес транспорту. – 2016. – № 1 (61). – С. 48–54. doi: http://doi.org/10.15802/stp2016/60953
  10. Biliaiev, M. M. Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography / M. M. Biliaiev, M. M. Kharytonov // NATO Science for Peace and Security. Series C: Environmental Security. – Dordrecht, 2012. – P. 87–91. doi: http://doi.org/10.1007/978-94-007-1359-8_15
  11. Cefic Guidance on safety Risk Assessment for Chemical Transport Operations [Electronic resource] / Croner-i. – Available at: http://clc.am/OnkmUw – Title from the screen. – Accessed : 29.03.2019.
  12. Effect of barriers on the status of atmospheric pollution by mathematical modeling / Z. Naserzadeh, F. Atabi, F. Moattar, N. M. Nejad // Bioscience Biotechnology Research Communications. – 2017. – Vol. 10 (1). – P. 192–204.
  13. Oyjinda, P. Numerical Simulation to Air Pollution Emission Control near an Industrial Zone [Electronic resource] / P. Oyjinda, N. Pochai // Advances in Mathematical Physics. – 2017. – Vol. 2017. – doi: http://doi.org/10.1155/2017/5287132
  14. Protective Action Criteria. A Review of Their Derivation, Use, Advantages and Limitations [Electronic resource] // Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compli-ance Division, Alberta Health. – Edmonton, Alberta, 2017. – Available at: http://open.alberta.ca/publications/9781460131213 – Title from the screen. – Accessed : 23.04.2019.
  15. The analysis of the use of mathematical modeling for emergency planning purposes [Electronic resource] / O. Zavila, P. Dobes, J. Dlabka, J. Bitta // The science for population protection. – 2015. – № 2. – Available at: http://www.population-protection.eu/prilohy/casopis/eng/22/112.pdf – Title from the screen. – Accessed : 23.04.2019.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)