DOI: https://doi.org/10.15802/stp2019/181478

### CALCULATION OF EXPLOSIVE ZONES IN EMERGENCY EMISSION OF AMMONIA

L. V. Amelina, O. V. Berlov, M. H. Maliuhin, Z. M. Yakubovska

#### Abstract

Purpose. This work involves the development of a mathematical model for the calculation of hazardous areas during emergency ammonia emissions. As an example emergency ammonia emissions at the pumping station are considered. Methodology. To solve this problem, we used the equation for the flow of ideal liquid – the equation for the velocity potential. The numerical solution of this three-dimensional equation is carried out using the Richardson method. After determining the velocity potential, the air velocity field is calculated. To predict explosive zones, a numerical solution of the three-dimensional equation of the ammonia mass transfer is used. When using this mathematical model, the non-uniform field of the wind flow velocity, the change in the vertical coefficient of atmospheric diffusion with height, the intensity of ammonia emission, and the place of release of the chemically hazardous substance are taken into account. To numerically solve the equation of ammonia transport in atmospheric air, a difference splitting scheme is used. At each step of the splitting, the unknown value of ammonia concentration is determined by the explicit formula of the point-to-point computation. Findings. Based on the developed mathematical model, a computational experiment was conducted to assess the dynamics of the formation of explosive zones in the territory of a pumping station that pumps ammonia. Information was obtained on the formation of chemical contamination zones at the pumping station. Originality. A mathematical model has been developed that allows you to quickly calculate the dynamics of the formation of explosive zones in the territory of a chemically hazardous object in case of emergency. The developed mathematical model can be used to assess the risk of toxic damage to people at a chemically hazardous facility in case of emergency. Practical value. On the basis of the developed numerical model a computer program was created, which allows to carry out serial computational experiments to determine the formation dynamics of the chemical contamination zones of atmospheric air. Standard input data are required to use the developed program. The developed numerical model can be used for serial calculations in the development of the emergency response plan for chemically hazardous facilities.

#### Keywords

chemical pollution of the atmosphere; ammonia; numerical simulation

#### Full Text:

PDF (Українська) HTML (Українська)

#### References

Alymov, V. T., & Tarasova, N. P. (2004). Tekhnogennyy risk. Analiz i otsenka: Uchebebnoe posobie dlya vuzov. Moscow: Akademkniga. (in Russian)

Belyaev, N. N., Gunko, Y. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)

Marchuk, G. I. (1982). Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy. Moscow: Nauka. (in Russian)

Belyaev, N. N., Gunko, Y. Y., Kirichenko, P. S., & Muntyan, L. Y. (2017). Otsenka tekhnogennogo riska pri emissii opasnykh veshchestv na zheleznodorozhnom transporte. Krivoi Rog: Kozlov R. A. (in Russian)

Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Belyaev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kуiv: Naukova dumka. (in Russian)

Barret, A. M. (2009). Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectiveness. (Dissertation of Doctor of Philosophy). Carnegie Mellon University, Pittsburg. (in English)

Berlov, O. V. (2016). Atmosphere protection in case of emergency during transportation of dangerous cargo. Science and Transport Progress, 1(61), 48-54. doi: 10.15802/stp2016/60953 (in English)

Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security, 87-91. doi: 10.1007/978-94-007-1359-8_15 (in English)

CEFIC Guidance on safety Risk Assessment for Chemical Transport Operations. Croner-i. Retrived from https://app.croneri.co.uk/news/cefic-guidance-safety-risk-assessment-chemical-transportoperations?product=139 (in English)

Tumanov, A., Gumenyuk, V., & Tumanov, V. (2017). Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility. IOP Conf. Series: Earth and Environmental Science, 90. doi: 10.1088/1755-1315/90/1/012027 (in English)

Zahra Naserzadeh, Farideh Atabi, Faramarz Moattar, & Naser Moharram Nejad. (2017). Effect of barriers on the status of atmospheric pollution by mathematical modeling. Bioscience Biotechnology Research Communication, 10(1), 192-204. (in English)

Cao, C., Li, C., Yang, Q., & Zhang, F. (2017). Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain. Sustainability, 9(11). doi: 10.3390/su9112103 (in English)

Government of Alberta. (2017). Protective Action Criteria: A Review of Their Derivation, Use, Advantages and Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrived from http://open.alberta.ca/publications/ 9781460131213 (in English)

Zavila, О., Dobes, Р., Dlabka, J., & Bitta, J. (2015). The analysis of the use of mathematical modeling for emergency planning purposes. The Science for Population Protection, 2. (in English)

#### GOST Style Citations

1. Алымов, В. Т. Техногенный риск. Анализ и оценка : учеб. пособие для вузов / В. Т. Алымов, Н. П. Тарасова. – Москва : Академкнига, 2004. – 118 с.
2. Беляев, Н. Н. Защита зданий от проникновения в них опасных веществ : монография / Н. Н. Беляев, Е. Ю. Гунько, Н. В. Росточило. – Днепропетровск : Акцент ПП, 2014. – 136 с.
3. Марчук, Г. И. Математическое моделирование в проблеме окружающей среды / Г. И. Марчук. – Москва : Наука, 1982. – 320 с.
4. Оценка техногенного риска при эмиссии опасных веществ на железнодорожном транспорте / Н. Н. Беляев, Е. Ю. Гунько, П. С. Кириченко, Л. Я. Мунтян. – Кривой Рог : Р. А. Козлов, 2017. – 127 с.
5. Численное моделирование распространения загрязнения в окружающей среде / М. З. Згуровский,В. В. Скопецкий, В. К. Хрущ, Н. Н. Беляев. – Киев : Наук. думка, 1997. – 368 с.
6. Barret, A. M. Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectiveness : Degree of Doctor of Philosophy / Anthony Michael Barret ; Carnegie Mellon University. – Pittsburg, Pennsylvania, 2009. – 123 p.
7. Berlov, O. V. Atmosphere protection in case of emergency during transportation of dangerous cargo / O. V. Berlov // Наука та прогрес транспорту. – 2016. – № 1 (61). – С. 48–54. doi: 10.15802/stp2016/60953
8. Biliaiev, M. M. Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography / M. M. Biliaiev, M. M. Kharytonov // NATO Science for Peace and Security. Series C: Environmental Security. – Dordrecht, 2012. – P. 87–91. doi: 10.1007/978-94-007-1359-8_15
9. CEFIC Guidance on safety Risk Assessment for Chemical Transport Operations [Електронний ресурс] // Croner-i. – Режим доступу: https://app.croneri.co.uk/news/cefic-guidance-safety-risk-assessment-chemicaltransport-operations?product=139 – Назва з екрана. – Перевірено : 15.10.2019
10. Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility / Aleksandr Tumanov, Vasily Gumenyuk, Vladimir Tumanov // IOP Conf. Series: Earth and Environmental Science. – 2017. – Vol. 90. doi: 10.1088/1755-1315/90/1/012027
11. Effect of barriers on the status of atmospheric pollution by mathematical modeling / Zahra Naserzadeh, Farideh Atabi, Faramarz Moattar, Naser Moharram Nejad // Bioscience Biotechnology Research Communication. – 2017. – Vol. 10 (1). – P. 192–204.
12. Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain / Cejun Cao, Congdong Li, Qin Yang, Fanshun Zhang // Sustainability. – 2017. – Vol. 9. – Іss. 11. doi: 10.3390/su9112103
13. Protective Action Criteria. A Review of Their Derivation, Use, Advantages and Limitations [Електронний ресурс] // Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. – Edmonton, Alberta, 2017. – Режим доступа: http://open.alberta.ca/publications/9781460131213 – Назва з екрана. – Перевірено : 15.10.2019
14. The analysis of the use of mathematical modeling for emergency planning purposes / Ondrej Zavila, Pavel Dobes, Jakub Dlabka, Jan Bitta // The Science for Population Protection. – 2015. – No. 2.

This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)