DOI: https://doi.org/10.15802/stp2019/181499

COMPUTER SIMULATION OF DEAD-END MINE WORKING VENTILATION

V. V. Biliaieva, P. S. Kirichenko, E. Y. Gunko, I. O. Bondarenko, P. B. Mashykhina, Z. M. Yakubovska

Abstract


Purpose. The important problem in the field of ecological safety and industrial safety is providing of normal microclimate in dead-end mine working. In these regions of the mine methane gas can be accumulated and as a result explosion may take place. So, to avoid these accidents it is important to ventilate appropriately dead-end mine working. The purpose of the work is development of quick computing mathematical model to obtain information about dead-end mine working ventilation process. Methodology. The process of dead-end mine working ventilation computing is separated in two stages. At the first stage the velocity flow field is computed in the dead-end mine working. We consider the situation when the suction tube is situated in this region. To solve this problem the fluid dynamics model of inviscid gas flow was used. At the second stage of the computational modeling the convective- diffusive equation of admixture transfer was used. The equation takes into account non-uniform flow field in the dead end mine workings. Findings. The developed numerical model was coded using FORTRAN language. The developed computer code allows to perform numerical experiment to assess the efficiency of suction tube implementation to decrease methane gas concentration in dead-end mine working. Originality. The developed numerical model takes into account physical factors, which are not considered nowadays in the empirical models, which are used for solving the problems of dead-end mine working ventilation. It allows taking into account the geometrical form of the dead-end mine working. Practical value. The developed computer program allows to perform calculations to assess the efficiency of suction system used for the ventilation of the dead-end mine working.


Keywords


air pollution; dead end mine workings; mathematical modelling; numerical model

Full Text:

PDF HTML

References


Belyaev, N. N., Gunko, Y. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)

Beresnevich, P. V., Mikhaylov, V. A., & Filatov, S. S. (1991). Aerologtya karerov: spravochnik. Moscow: Nedra. (in Russian)

Marchuk, G. I. (1982). Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy. Moscow: Nauka. (in Russian)

Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Biliaiev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kyiv: Naukova dumka. (in Russian)

Grigoras, G., Cuculeanu, V., Ene, G., Mocioaca, G., & Deneanu, A. (2012). Air pollution dispersion modeling in a polluted industrial area of complex terrain from. Romanian Reports in Physics, 64(1), 173-186. (in English)

Alvarez, J. T., Alvarez, I. D., & Lougedo, S. T. (2008). Dust Barriers In Open Pit Blasts. Multiphase Computational Fluid Dynamics (CFD) Simulations. WIT Transactions on Ecology and the Environment, 116, 86-93.doi: 10.2495/AIR080101 (in English)

Anand Kumar Varma, S. Retrieved from https://www.researchgate.net/publication/318284616_mathematical_modeling_of_air_pollution_in_a_thermal_power_project (in English)

Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security, 87-91. doi: 10.1007/978-94-007-1359-8_15 (in English)

Jyotsna, K., & Tandon, A. (2017). A mathematical model to study the impact of mining activities and pollution on forest resources and wildlife population. Journal of Biological Systems, 25(2), 207-230. http://doi.org/10.1142/S0218339017500115 (in English)

Government of Alberta. (2017). Protective Action Criteria: A Review of Their Derivation, Use, Advantages and Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrived from http://open.alberta.ca/publications/ 9781460131213 (in English)

Škuta, R., Kučerová, R., Pavelek, Z., & Dirner, V. (2017). Assessment of mining activities with respect to the environmental protection. Acta Montanistica Slovaca, 22(1), 79-93. (in English)

Zavila, О., Dobes, Р., Dlabka, J., & Bitta, J. (2015). The analysis of the use of mathematical modeling foremergency planning purposes. The Science for Population Protection, 2. Retrieved from http://www.population-protection.eu/prilohy/casopis/eng/22/112.pdf (in English)


GOST Style Citations


  1. Беляев, Н. Н. Защита зданий от проникновения в них опасных веществ : монография / Н. Н. Беляев, Е. Ю. Гунько, Н. В. Росточило. – Днепропетровск : Акцент ПП, 2014. – 136 с.
  2. Бересневич, П. В. Аэрология карьеров : справочник / П. В. Бересневич, В. А. Михайлов, С. С. Филатов. – Москва : Недра, 1991. – 280 с.
  3. Марчук, Г. И. Математическое моделирование в проблеме окружающей среды / Г. И. Марчук. – Москва : Наука, 1982. – 320 с.
  4. Численное моделирование распространения загрязнения в окружающей среде / М. З. Згуровский, В. В. Скопецкий, В. К. Хрущ, Н. Н. Беляев. – Киев : Наук. думка, 1997. – 368 с.
  5. Air pollution dispersion modeling in a polluted industrial area of complex terrain from Romania / G. Grigoras, V. Cuculeanu, G. Ene, G. Mocioaca, A. Deneanu // Romanian Reports in Physics. – 2012. – Vol. 64, No. 1. – P. 173–186.
  6. Alvarez, J. T. Dust barriers in open pit blasts. Multiphase Computational Fluid Dynamics (CFD) Simulations / J. T. Alvarez, I. D. Alvarez, S. T. Lougedo // WIT Transactions on Ecology and the Environment. –2008. – Vol. 116. – P. 86–93. doi:10.2495/AIR080101
  7. Anand Kumar Varma, S. Mathematical modeling of air pollution in a thermal power prоject [Electronic resource] / S. Anand Kumar Varma. – Available at: https://www.researchgate.net/publication/ 318284616_mathematical_modeling_of_air_pollution_in_a_thermal_power_project – Title from the screen. – Accessed : 16.10.2019.
  8. Biliaiev, M. M. Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography / M. M. Biliaiev, M. M. Kharytonov // NATO Science for Peace and Security. Series C: Environmental Security. – Dordrecht, 2012. – P. 87–91. doi: http://doi.org/10.1007/978-94-007-1359-8_15
  9. Jyotsna, K. A mathematical model to study the impact of mining activities and pollution on forest resources and wildlife population / K. Jyotsna, A. Tandon // Journal of Biological Systems. – 2017. – Vol. 25, No. 02. – Р. 207–230. http://doi.org/10.1142/S0218339017500115
  10. Protective Action Criteria. A Review of Their Derivation, Use, Advantages and Limitations [Electronic resource] // Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. – Edmonton, Alberta, 2017. – Available at: http://open.alberta.ca/publications/9781460131213 – Title from the screen. – Accessed : 16.10.2019.
  11. Škuta, R. Assessment of mining activities with respect to the environmental protection / R. Škuta, R. Kučerová, Z. Pavelek, V. Dirner // Acta Montanistica Slovaca. – 2017. – Vol. 22 (1). – P. 79–93.
  12. The analysis of the use of mathematical modeling for emergency planning purposes [Electronic resource] / O. Zavila, P. Dobes, J. Dlabka, J. Bitta // The science for population protection. – 2015. – № 2. – Available at: http://www.population-protection.eu/prilohy/casopis/eng/22/112.pdf – Title from the screen. – Accessed : 16.10.2019.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)