COMPUTER SIMULATION OF DEAD-END MINE WORKING VENTILATION
DOI:
https://doi.org/10.15802/stp2019/181499Keywords:
air pollution, dead end mine workings, mathematical modelling, numerical modelAbstract
Purpose. The important problem in the field of ecological safety and industrial safety is providing of normal microclimate in dead-end mine working. In these regions of the mine methane gas can be accumulated and as a result explosion may take place. So, to avoid these accidents it is important to ventilate appropriately dead-end mine working. The purpose of the work is development of quick computing mathematical model to obtain information about dead-end mine working ventilation process. Methodology. The process of dead-end mine working ventilation computing is separated in two stages. At the first stage the velocity flow field is computed in the dead-end mine working. We consider the situation when the suction tube is situated in this region. To solve this problem the fluid dynamics model of inviscid gas flow was used. At the second stage of the computational modeling the convective- diffusive equation of admixture transfer was used. The equation takes into account non-uniform flow field in the dead end mine workings. Findings. The developed numerical model was coded using FORTRAN language. The developed computer code allows to perform numerical experiment to assess the efficiency of suction tube implementation to decrease methane gas concentration in dead-end mine working. Originality. The developed numerical model takes into account physical factors, which are not considered nowadays in the empirical models, which are used for solving the problems of dead-end mine working ventilation. It allows taking into account the geometrical form of the dead-end mine working. Practical value. The developed computer program allows to perform calculations to assess the efficiency of suction system used for the ventilation of the dead-end mine working.
References
Belyaev, N. N., Gunko, Y. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)
Beresnevich, P. V., Mikhaylov, V. A., & Filatov, S. S. (1991). Aerologtya karerov: spravochnik. Moscow: Nedra. (in Russian)
Marchuk, G. I. (1982). Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy. Moscow: Nauka. (in Russian)
Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Biliaiev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kyiv: Naukova dumka. (in Russian)
Grigoras, G., Cuculeanu, V., Ene, G., Mocioaca, G., & Deneanu, A. (2012). Air pollution dispersion modeling in a polluted industrial area of complex terrain from. Romanian Reports in Physics, 64(1), 173-186. (in English)
Alvarez, J. T., Alvarez, I. D., & Lougedo, S. T. (2008). Dust Barriers In Open Pit Blasts. Multiphase Computational Fluid Dynamics (CFD) Simulations. WIT Transactions on Ecology and the Environment, 116, 86-93.doi: 10.2495/AIR080101 (in English)
Anand Kumar Varma, S. Retrieved from https://www.researchgate.net/publication/318284616_mathematical_modeling_of_air_pollution_in_a_thermal_power_project (in English)
Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security, 87-91. doi: 10.1007/978-94-007-1359-8_15 (in English)
Jyotsna, K., & Tandon, A. (2017). A mathematical model to study the impact of mining activities and pollution on forest resources and wildlife population. Journal of Biological Systems, 25(2), 207-230. http://doi.org/10.1142/S0218339017500115 (in English)
Government of Alberta. (2017). Protective Action Criteria: A Review of Their Derivation, Use, Advantages and Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrived from http://open.alberta.ca/publications/ 9781460131213 (in English)
Škuta, R., Kučerová, R., Pavelek, Z., & Dirner, V. (2017). Assessment of mining activities with respect to the environmental protection. Acta Montanistica Slovaca, 22(1), 79-93. (in English)
Zavila, О., Dobes, Р., Dlabka, J., & Bitta, J. (2015). The analysis of the use of mathematical modeling foremergency planning purposes. The Science for Population Protection, 2. Retrieved from http://www.population-protection.eu/prilohy/casopis/eng/22/112.pdf (in English)
Published
How to Cite
Issue
Section
License
Copyright and Licensing
This journal provides open access to all of its content.
As such, copyright for articles published in this journal is retained by the authors, under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0). The CC BY license permits commercial and non-commercial reuse. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project, the Directory of Open Access Journals, or the Budapest Open Access Initiative.
The CC BY 4.0 license allows users to copy, distribute and adapt the work in any way, provided that they properly point to the author. Therefore, the editorial board of the journal does not prevent from placing published materials in third-party repositories. In order to protect manuscripts from misappropriation by unscrupulous authors, reference should be made to the original version of the work.