DOI: https://doi.org/10.15802/stp2019/184385

OPTIMAL ROUTE DEFINITION IN THE RAILWAY INFORMATION NETWORK USING NEURAL-FUZZY MODELS

V. M. Pakhomova, Y. S. Mandybura

Abstract


Purpose. Modern algorithms for choosing the shortest route, for example, the Bellman-Ford and Dijkstra algorithms, which are currently widely used in existing routing protocols (RIP, OSPF), do not always lead to an effective result. Therefore, there is a need to study the possibility of organizing routing in in the railway network of information and telecommunication system (ITS) using the methods of artificial intelligence. Methodology. On the basis of the simulation model created in the OPNET modeling system a fragment of the ITS railway network was considered and the following samples were formed: training, testing, and control one. For modeling a neural-fuzzy network (hybrid system) in the the MatLAB system the following parameters are input: packet length (three term sets), traffic intensity (five term sets), and the number of intermediate routers that make up the route (four term sets). As the resulting characteristic, the time spent by the packet in the routers along its route in the ITS network (four term sets) was taken. On the basis of a certain time of packet residence in the routers and queue delays on the routers making up different paths (with the same number of the routers) the optimal route was determined. Findings. For the railway ITS fragment under consideration, a forecast was made of the packet residence time in the routers along its route based on the neural-fuzzy network created in the MatLAB system. The authors conducted the study of the average error of the neural-fuzzy network`s training with various membership functions and according to the different methods of training optimization. It was found that the smallest value of the average learning error is provided by the neuro-fuzzy network configuration 3–12–60–60–1 when using the symmetric Gaussian membership function according to the hybrid optimization method. Originality. According to the RIP and OSPF scenarios, the following characteristics were obtained on the simulation model created in the OPNET simulation system: average server load, average packet processing time by the router, average waiting time for packets in the queue, average number of lost packets, and network convergence time. It was determined that the best results are achieved by the simulation network model according to the OSPF scenario. The proposed integrated routing system in the ITS network of railway transport, which is based on the neural-fuzzy networks created, determines the optimal route in the network faster than the existing OSPF routing protocol. Practical value. An integrated routing system in the ITS system of railway transport will make it possible to determine the optimal route in the network with the same number of the routers that make up the packet path in real time.


Keywords


routing; OSPF protocol; simulation model; hybrid system; term; membership function; sample; error

References


Aslanov, A. M., & Solodovnik, M. S. (2014). Issledovanie intellektualnogo podkhoda v marshrutizatsii kompyuternykh setey. Elektrotekhnicheskie i kompyuternye sistemy, 16(92), 93-100. (in Russian)

Kovalenko, T. A. (2012). Razrabotka i issledovanie integrirovannoy sistemy marshrutizatsii v kompyuter-nykh setyakh. (Avtoreferat dysertatsii kandydata tekhnichnykh nauk). SGU, Samara. (in Russian)

Kolesnikov, K. V., Karapetian, A. R., & Bahan, V. Y. (2016). Analiz rezultativ doslidzhennia realizatsii zadachi marshrutyzatsii na osnovi neironnykh merezh ta henetychnykh alhorytmiv. Visnyk Cherkaskogo derzhavnogo tehnologichnogo universitetu. Seria: Tehnichni nauky, 1, 28-34. (in Ukrainian)

Kutyrkin, A. V., & Semin, A. V. (2007). Ispolzovanie neyronnoy seti Khopfilda dlya resheniya optimizatsionnykh zadach marshrutizatsii: Metodicheskie ukazaniya. Moscow: Izdatelstvo Moskovskogo gosudarstvennogo universiteta putey soobshcheniya. (in Russian)

Nikitchenko, V. V. (2010). Utility modeliruyushchey sistemy Opnet Modeler. Odessa: Odesskaya nat-sionalnaya akademiya svyazi im. A. S. Popova. (in Russian)

Pavlenko, M. A. (2011). Analysis opportunities of artificial neural networks for solving single-path routing in telecommunication network. Problemy telekomunikatsii, 2(4). Retrieved from http://pt.journal.kh.ua/index/0-139 (in Russian)

Pakhomova, V. M. (2018). Doslidzhennia informatsiino-telekomunikatsiinoi systemy zaliznychnoho transportu z vykorystanniam shtuchnoho intelektu: monohrafiia. Dnipro: Standart-Servis. (in Ukrainian)

Bryndas, A. M., Rozhak, P. I., Semenishin, N. O., & Kurka, R. R. (2016). Implementing of the Problem of Choosing the Optimal Flight Rout by a Hopfield Neural Network. The Scientific Bulletin of UNFU, 26.1, 357-363. (in Ukrainian)

Tarasyan, V. S. Paket Fuzzy Logic Toolbox for MatLAB: uchebnoe posobie. (2013) Yekaterinburg: Izdatelstvo: UrGUPS. (in Russian)

Shtovba, S. D. (2007). Proektirovanie nechetkikh sistem sredstvami MatLAB. Moscow: Goryachaya liniya–Telekom. (in Russian)

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of National Academy of Sciences, 79(8), 2554-2558.doi: https://doi.org/10.1073/pnas.79.8.2554 (in English)

Iqbal, A., & Ali Khan, S. L. (2015). Performance Evaluation of Real Time Applications for RIP, OSPF and EIGRP for flapping links using OPNET Modeler. International Journal of Computer Networks and Communications Security, 3(1). Retrieved from: http://www.ijcncs.org/published/volume3/issue1/p4_3-1.pdf (in English)

Kumar, M. V., & Lalitha, Dr. T. (2016). Soft Computing: Fuzzy Logic Approach in Wireless Sensors Networks. Circuits and Systems, 07(08), 1242–1249. doi: https://doi.org/10.4236/cs.2016.78108 (in English)

Kojić, N. S., Zajeganović-Ivančić, M. B., Reljin, I.S., & Reljin B. D. (2010). New algorithm for packet routing in mobile ad-hoc networks. Journal of Automatic Control, 20(1), 9-16.doi: https://doi.org/10.2298/jac1001009k (in English)

Pakhomova, V. M., Skaballanovich, T. I., & Bondareva, V. S. (2019). Intelligent routing in the network of information and telecommunication system of railway transport. Science and Transport Progress, 2(80), 77-90. doi: https://doi.org/10.15802/stp2019/166092 (in English)

Pakhomova, V. M. & Tsykalo, I.D.(2018). Optimal route definition in the network based on the multilayer neural model. Science and Transport Progress, 6(78), 126-142. doi: https://doi.org/10.15802/stp2018/154443 (in English)

Sasikala, K. & Rajamani, V. (2013). A neuro fuzzy based conditional shortest path routing protocol for wireless mesh network. International Journal of Enhanced Research in Management & Computer Applications, 2(5), 1-10. (in English)

Schuler, W. H., Bastos-Filho, C. J. A., & Oliveira, A. L. I. (2009). A novel hybrid training method for hopfield neural networks applied to routing in communications networks. International Journal of Hybrid Intelligent Systems, 6(1), 27-39. doi: https://doi.org/10.3233/his-2009-0074 (in English)

Herguner, K., Kalan, R. S., Cetinkaya, C., & Sayit, M. (2017). Towards QoS-aware routing for DASH utilizing MPTCP over SDN. 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). doi: https://doi.org/10.1109/nfv-sdn.2017.8169844 (in English)

Zhukovyts’kyy, I. & Pakhomova, V. (2018). Research of Token Ring network options in automation system of marshalling yard. Transport Problems, 13(2), 145-154. (in English)


GOST Style Citations


  1. Асланов, А. М. Исследование интеллектуального подхода в маршрутизации компьютерных сетей / А. М. Асланов, М. С. Солодовник // Электротехнические и компьютерные системы. – 2014. – № 16 (92). – С. 93–100.
  2. Коваленко, Т. А. Разработка и исследование интегрированной системы маршрутизации в компьютерных сетях : автореф. дис. ... канд. техн. наук : 05.13.15 / Коваленко Татьяна Анатольевна ; СГУ. – Самара, 2012. – 16 с.
  3. Колесніков, К. В. Аналіз результатів дослідження реалізації задачі маршрутизації на основі нейронних мереж та генетичних алгоритмів / К. В. Колесніков, А. Р. Карапетян, В. Ю. Баган // Вісн. Черкас. держ. технол. ун-ту. Серія: Технічні науки : зб. наук. пр. – Черкаси, 2016. – № 1. – C. 28–34.
  4. Кутыркин, А. В. Использование нейронной сети Хопфилда для решения оптимизационных задач маршрутизации : метод. указания / А. В. Кутыркин, А. В. Семин. – Москва : Изд-во Моск. гос. ун-та путей сообщения, 2007. – 15 с.
  5. Никитченко, В. В. Утилиты моделирующей системы Opnet Modeler / В. В. Никитченко. – Одесса : Одес. нац. акад. связи им. А. С. Попова, 2010. – 128 с.
  6. Павленко, М. А. Анализ возможностей искусственных нейронных сетей для решения задач однопутевой маршрутизации в ТКС [Electronic resource] / М. А. Павленко // Проблеми телекомунікацій. – 2011. – № 2 (4). – Available at: http://pt.journal.kh.ua/index/0-139 – Title from the screen. – Accessed : 26.09.2019.
  7. Пахомова, В. М. Дослідження інформаційно-телекомунікаційної системи залізничного транспорту з використанням штучного інтелекту : монографія / В. М. Пахомова. – Дніпро : Стандарт-Сервіс, 2018. – 220 с.
  8. Реалізація задачі вибору оптимального авіамаршруту нейронною мережею Хопфілда / А. М. Бриндас, П. І. Рожак, Н. О. Семенишин, Р. Р. Курка // Наук. вісн. НЛТУ України : зб. наук.-техн. пр. – Львів, 2016. – Вип. 26.1. – С. 357–363.
  9. Тарасян, В. С. Пакет Fuzzy Logic Toolbox for MatLAB : учебное пособие / В. С. Тарасян. – Екатеринбург : Изд-во УрГУПС, 2013. – 112 с.
  10. Штовба, С. Д. Проектирование нечетких систем средствами MatLAB / С. Д. Штовба. – Москва : Горячая линия – Телеком, 2007. – 288 c.
  11. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities / J. J. Hopfield // Proceedings of National Academy of Sciences. – 1982. – Vol. 79. – Іss. 8. – P. 2554–2558. doi: 10.1073/pnas.79.8.2554
  12. Iqbal, A. Performance Evaluation of Real Time Applications for RIP, OSPF and EIGRP for flapping links using OPNET Modeler [Electronic resource] // A. Iqbal, S. L. Ali Khan / International Journal of Computer Networks and Communications Security. – 2015. – Vol. 3, No. 1. – Available at: http://www.ijcncs.org/published/volume3/issue1/p4_3-1.pdf – Title from the screen. – Accessed : 26.09.2019
  13. Kumar, M. V. Soft Computing: Fuzzy Logic Approach in Wireless Sensors Networks / M. V. Kumar, Dr. T. Lalitha // Circuits and Systems. – 2016. – Vol. 07. – Iss. 08. – P. 1242–1249.doi: https://doi.org/10.4236/cs.2016.78108
  14. New algorithm for packet routing in mobile ad-hoc networks / N. S. Kojić, M. B. Zajeganović-Ivančić, I. S. Reljin, B. D. Reljin // Journal of Automatic Control. – 2010. – Vol. 20. – Іss. 1. – P. 9–16. doi: 10.2298/JAC1001009K
  15. Pakhomova, V. M. Intelligent routing in the network of information and telecommunication system of railway transport / V. M. Pakhomova, T. I. Skaballanovich, V. S. Bondareva // Наука та прогрес транспорту. – 2019. – № 2 (80). – P. 77–90. doi: 10.15802/stp2019/166092
  16. Pakhomova, V. M. Optimal route definition in the network based on the multilayer neural model / V. M. Pakhomova, I. D. Tsykalo // Наука та прогрес транспорту. – 2018. – № 6 (78). – P. 126–142. doi: 10.15802/stp2018/154443
  17. Sasikala, K. A neuro fuzzy based conditional shortest path routing protocol for wireless mesh network / K. Sasikala, V. Rajamani // International Journal of Enhanced Research in Management & Computer Applications. –2013. – Vol. 2. – Iss. 5. – P. 1–10.
  18. Schuler, W. H. A novel hybrid training method for hopfield neural networks applied to routing in communications networks / W. H. Schuler, C. J. A. Bastos-Filho, A. L. I. Oliveira // International Journal of Hybrid Intelligent Systems. – 2009. – Vol. 6. – Іss. 1. – P. 27–39. doi: 10.3233/his-2009-0074
  19. Towards QoS-aware routing for DASH utilizing MPTCP over SDN / K. Herguner, R. S. Kalan, C. Cetinkaya, M. Sayit // IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN) (6–8 Nov. 2017). – Berlin, Germany, 2017. – P. 1–6. doi: 10.1109/nfv-sdn.2017.8169844
  20. Zhukovyts’kyy, I. Research of Token Ring network options in automation system of marshalling yard / I. Zhukovyts’kyy, V. Pakhomova // Transport Problems. – 2018. – Vol. 13. – Iss. 2. – P. 149–158.


 

Cited-by:

1. ORGANIZING WIRELESS NETWORK AT MARSHALLING YARDS USING THE BEE METHOD
V. M. Pakhomova, D. I. Nazarova
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 2(86)  First page: 60  Year: 2020  
doi: 10.15802/stp2020/204005



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)