DOI: https://doi.org/10.15802/stp2019/195376

RISK ASSESSMENT WITH THE USE OF THE MONTE-CARLO METHOD

L. V. Amelina, M. M. Biliaiev, O. V. Berlov, L. A. Cherednychenko

Abstract


Purpose. This work involves the development of a numerical model for the calculation of chemical contamination zones in the event of ammonia accident at the pumping station, as well as a model for assessing the risk of damage and wound depth in the body in case of fragments scattering formed during the pipeline explosion at the pumping station. Methodology. To solve this problem, we used the mass transfer equation for the ammonia propagation in the air. A potential flow model is used to calculate the air flow velocity field in the presence of buildings at the ammonia pumping station. The numerical solution of the three-dimensional equation for the velocity potential is derived by the cumulative approximation method. When using this numerical model, the irregular field of wind flow velocity, the change in vertical atmospheric diffusion coefficient with altitude, the ammonia emission intensity, the emission point of the chemical substance were taken into account. A differential splitting scheme was used to numerically solve the ammonia transfer equation in the air. Physical splitting of the three-dimensional mass transfer equation to a system of equations describing the contaminant transfer in one coordinate direction is carried out beforehand. At each step of splitting, the unknown value of ammonia concentration is determined by an explicit scheme of point-to-point computation. A mathematical model for calculating the fragments scattering in case of emergency at the pumping station is considered. Findings. On the basis of the developed numerical model, a computational experiment was conducted to estimate the level of air pollution at the ammonia pumping station. The area of possible damage of people during the fragment scattering during the explosion at the ammonia pumping station was determined. Originality. A numerical model has been developed that allows calculating the chemical contamination zones in case of emergency ammonia emission at the pumping station. The model is complemented by assessment of impact zones in case of fragment scattering during the pumping station explosion. Practical value. Based on the developed mathematical model, a computer program was created, which allows performing serial calculations for determining the impact zones during emergency situations at the chemically hazardous objects. The mathematical model developed can be used to perform serial calculations during the development of emergency response plan for chemically hazardous objects.


Keywords


atmosphere chemical pollution; emergency emission; mathematical modeling

References


Alymov, V. T., & Tarasova, N. P. (2004). Tekhnogennyy risk. Analiz i otsenka: uchebebnoe posobie dlya vuzov. Moscow: Akademkniga. (in Russian)

Biliaiev, N. N., Gunko, E. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)

Marchuk, G. I. (1982). Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy. Moscow: Nauka. (in Russian)

Belyaev, N. N., Gunko, Y. Y., Kirichenko, P. S., & Muntyan, L. Y. (2017). Otsenka tekhnogennogo riska pri emissii opasnykh veshchestv na zheleznodorozhnom transporte. Krivoi Rog: Kozlov R. A. (in Russian).

Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Biliaiev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kyiv: Naukova dumka. (in Russian)

Barret, A. M. (2009). Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectivness. (Doctoral dissertation). Carnegie Mellon University, Pittsburg, Pennsylvania. (in English)

Berlov, O. V. (2016). Atmosphere protection in case of emergency during transportation of dangerous cargo. Sciance and Transport Progress, 1(61), 48-54. doi: 10.15802/stp2016/60953 (in English)

Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security, 87-91. doi: 10.1007/978-94-007-1359-8_15 (in English)

CEFIC Guidance on safety Risk Assessment for Chemical Transport Operations. Croner-i. Retrieved from http://clc.am/OnkmUw (in English)

Tumanov, A., Gumenyuk, V., & Tumanov, V. (2017). Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility. IOP Conf. Series: Earth and Environmental Science, 90, 1-11. doi: 10.1088/1755-1315/90/1/012027 (in English)

Naserzadeh, Z., Atabi, F., Moattar, F., & Nejad, N. M. (2017). Effect of barriers on the status of atmospheric pollution by mathematical modeling. Bioscience Biotechnology Research Communications, 10(1), 192-204. (in English)

Cao, C., Li, C., Yang, Q., & Zhang, F. (2017). Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain. Sustainability, 9(11), 1-22. doi: 10.3390/su9112103 (in English)

Government of Alberta. (2017). Protective Action Criteria: A Review of Their Derivation, Use, Advantages and Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrieved from http://open.alberta.ca/publications/9781460131213 (in English)

Zavila, О., Dobes, Р., Dlabka, J., & Bitta, J. (2015). The analysis of the use of mathematical modeling for emergency planning purposes. The Science for Population Protection, 2, 1-9. (in English)


GOST Style Citations


  1. Алымов, В. Т. Техногенный риск. Анализ и оценка : учеб. пособие для вузов / В. Т. Алымов, Н. П. Тарасова. – Москва : Академкнига, 2004. – 118 с.
  2. Беляев, Н. Н. Защита зданий от проникновения в них опасных веществ : монография / Н. Н. Беляев, Е. Ю. Гунько, Н. В. Росточило. – Днепропетровск : Акцент ПП, 2014. – 136 с.
  3. Марчук, Г. И. Математическое моделирование в проблеме окружающей среды / Г. И. Марчук. – Москва : Наука, 1982. – 320 с.
  4. Оценка техногенного риска при эмиссии опасных веществ на железнодорожном транспорте / Н. Н. Беляев, Е. Ю. Гунько, П. С. Кириченко, Л. Я. Мунтян. – Кривой Рог : Р. А. Козлов, 2017. – 127 с.
  5. Численное моделирование распространения загрязнения в окружающей среде / М. З. Згуровский, В. В. Скопецкий, В. К. Хрущ, Н. Н. Беляев. – Киев : Наук. думка, 1997. – 368 с.
  6. Barret, A. M. Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectiveness : Degree of Doctor of Philosophy / Anthony Michael Barret ; Carnegie Mellon University. – Pittsburg, Pennsylvania, 2009. – 123 p.
  7. Berlov, O. V. Atmosphere protection in case of emergency during transportation of dangerous cargo / O. V. Berlov // Наука та прогрес транспорту. – 2016. – № 1 (61). – С. 48–54. doi: 10.15802/stp2016/60953
  8. Biliaiev, M. M. Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography / M. M. Biliaiev, M. M. Kharytonov // NATO Science for Peace and Security. Series C: Environmental Security. – Dordrecht, 2012. – P. 87–91. doi: 10.1007/978-94-007-1359-8_15
  9. CEFIC Guidance on safety Risk Assessment for Chemical Transport Operations [Electronic resource] // Croner-i. – Available at: http://clc.am/OnkmUw – Title from the screen. – Accessed : 08.11.2019
  10. Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility / A. Tumanov, V. Gumenyuk, V. Tumanov // IOP Conf. Series: Earth and Environmental Science. – 2017. – Vol. 90. – P. 1–11. doi: 10.1088/1755-1315/90/1/012027
  11. Effect of barriers on the status of atmospheric pollution by mathematical modeling / Z. Naserzadeh, F. Atabi, F. Moattar, N. Moharram Nejad // Bioscience Biotechnology Research Communication. – 2017. – Vol. 10 (1). – P. 192–204.
  12. Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain / C. Cao, C. Li, Q. Yang, F. Zhang // Sustainability. – 2017. – Vol. 9. – Іss. 11. – P. 1–22. doi: 10.3390/su9112103
  13. Protective Action Criteria. A Review of Their Derivation, Use, Advantages and Limitations [Electronic resource] // Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. – Edmonton, Alberta, 2017. – Available at: http://open.alberta.ca/publications/9781460131213 – Title from the screen. – Accessed : 08.11.2019
  14. The analysis of the use of mathematical modeling for emergency planning purposes / O. Zavila, P. Dobes, J. Dlabka, J. Bitta // The Science for Population Protection. – 2015. – No. 2. – P. 1–9.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)