DOI: https://doi.org/10.15802/stp2019/195821

GONDOLA CARS DYNAMICS FROM THE ACTION OF LONGITUDINAL FORCES

A. O. Shvets

Abstract


Purpose. The aim of the work is to study the influence of longitudinal quasistatic tensile and compressive forces in gondola cars arising at stationary and transient modes of train movement on their main dynamic indicators and interaction indicators of rolling stock with a rail track, taking into account the possibility of speed increasing. The relevance of this study is related with the need to control the longitudinal forces arising during stationary and transient modes of train movement, with increasing speeds, masses and lengths of trains, especially freight ones, increasing the locomotives` power. Methodology. The main method for studying the dynamic loading of a gondola car on typical three-element bogies is mathematical and computer modeling of the interaction of rolling stock and track structure based on the model of spatial vibrations of freight cars` couplings. In a theoretical study, the influence of quasistatic longitudinal tensile and compressive forces is considered depending on the change in speed and the force value on the tension of 1 MN; 0.5 MN; 0 and before compression of 0.5 MN; 1 MN. Findings. As a result of theoretical studies and after modeling, taking into account the processes of oscillation of gondola cars under the action of quasistatic longitudinal forces limited by norms to ± 1MN (100 tf), the dependencies of the main parameters normalized by technical documentation are obtained taking into account the value of the movement speed. Originality. The influence of longitudinal compressive and tensile forces on the dynamic loading of a freight car is studied in order to solve the problem of forecasting the dynamics of rolling stock, taking into account the value of the speed along curved track sections. Practical value. Application of the results obtained can increase the stability of freight rolling stock and the strength of the railway track, which in turn will remove some existing restrictions on permissible speeds and increase the technical speed of trains. The obtained dependencies of the main normalized indices on the longitudinal quasistatic force will make it possible to predict the development of deviations and prevent their transformation into the dangerous ones for train movement.


Keywords


gondola car; dynamic indicators; curved track sections; longitudinal forces; movement speed

References


Danilenko, E. I. (2010). Zaliznychna koliia: pidruchnyk dlia vyshchykh navchalnykh zakladiv. (Vol. 1-2). Kyiv: Inpres. (in Ukrainian)

Danovich, V. D., & Malysheva, A. A. (1998). Mathematical Model of Spatial Oscillations of the Coupling of Five Cars Moving Along a Rectilinear Section of the Track. Transport. Stress loading and durability of a rolling stock, 62-69. Dnepropetrovsk. (in Russian)

Danovich, V. D. (1982). Spatial Cars Oscillations in Inertia Track. (Dysertatsiia doktora tekhnichnykh nauk). Dnepropetrovsk Institute of Railway Transport Engineering, Dnеpropetrovsk. (in Russian)

Vahony vantazhni. Vymohy do mitsnosti ta dynamichnykh yakostei, 58 DSTU 33211:2017 (2017). (in Ukrai-nian)

Muginshteyn, L. A., & Romen, Yu. S. (2011). Vliyanie prodolnykh sil na opasnost skhodov porozhnikh vagonov v poezdakh. Vestnik of the Railway Research Institute, 3, 3-6. (in Russian)

Shvets, A. A., Zheleznov, K. I., Akulov, A. S., Zabolotny, A. N., & Chabanyuk, E. V. (2016). Determination the permissible forces in assessing the lift resistant factor of freight cars in trains. Science and Transport Progress, 1(61), 180-192. doi: 10.15802/stp2016/61045 (in Russian)

Blokhin, E. P., Pshinko, O. M., & Danovich, V. D. (1998). Razrabotka rekomendatsiy po snizheniyu iznosa koles i relsov za schet snizheniya sil dinamicheskogo vzaimodeystviya zheleznodorozhnykh ekipazhey i puti s uchetom statsionarnykh i nestatsionarnykh rezhi-mov dvizheniya (Vol. 1-3). Dnеpropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Dnеpropetrovsk. (in Russian)

Shvets, A. O., Bolotov, O. M., & Saparova, L. S. (2018). Influence of modes of braking on the wheel wear and stability of freight rolling stock. Visnyk sertyfikatsii zaliznychnoho transportu, 4(50), 68-82. (in Ukrainian)

Shimanovsky, A. O., & Sakharau, P. A. (2019). Effect of gap clearances in automatic coupling devices on longitudinal forces in intercar connections of homogeneous train. Mekhanika mashin, mekhanizmov i materialov, 2(47), 42-50. (in Russian)

Shimanovsky, A. O., Sakharau, P. A., & Kovalenko, A. V. (2018). Modeling of train longitudinal dynamics in MSC.ADAMS software. Aktualnye voprosy mashinovedeniya, 7, 75-78. (in Russian)

Shvets, A. A., Zhelieznov, K. I., Akulov, A. S., Zabolotnyi, A. N., & Chabaniuk, Y. V. (2015). Determination of the issue concerning the lift resistance factor of lightweight car. Science and Transport Progress, 6(60), 134-148. doi: 10.15802/stp2015/57098 (in English)

Blokhin, E. P., Pshinko, O. M., Danovich, V. D., & Korotenko, M. L. (1998). Effect of the state of car running gears and railway track on wheel and rail wear. Railway Bogies and Running Gears: Proceedings of the 4th International Conference, 313-323. Budapest. (in English)

Kurhan, D. (2016). Determination of Load for Quasi-static Calculations of Railway Track Stress-strain State. Acta Technica Jaurinensis, 9(1), 83-96. doi: 10.14513/actatechjaur.v9.n1.400 (in English)

Cole, C., Spiryagin, M., Wu, Q., & Sun, Y. Q. (2017). Modeling, simulation and applications of longitudinal train dynamics. Vehicle System Dynamics, 55(10), 1498-1571. doi: 10.1080/00423114.2017.1330484 (in English)

McKinnon, A. C. (2016). Freight Transport Deceleration: Its Possible Contribution to the Decarbonisation of Logistics. Transport Reviews, 36(4), 418-436. doi: 10.1080/01441647.2015.1137992 (in English)

Navarrete, J. A., & Otremba, F. (2016). Experimental and theoretical modeling of cargo sloshing during braking. ASME International Mechanical Engineering Congress and Exposition (Phoenix, Arizona, USA, Nov. 11-17, 2016). Dynamics, Vibration, and Control, 4B. Phoenix. doi: 10.1115/imece2016-65698 (in English)

Qi, Z., Huang, Z., & Kong, X. (2012). Simulation of longitudinal dynamics of long freight trains in positioning operations. Vehicle System Dynamics, 50(9), 1409-1433. doi: 10.1080/00423114.2012.661063 (in English)

Razinkin, N. E., Voronova, N. I., Podlesnikov, Y. D., & Danilov, S. N. (2019). The influence of additional discharge of the brake line on the longitudinal dynamics of the train during braking. Journal of Mechanical Engineering Research and Developments, 42(3), 6-9. doi: 10.26480/jmerd.03.2019.06.09

Sablin, O., Kuznetsov, V., Shinkarenko, V., & Ivanov, A. (2017). Rational distribution of excess regenerative energy in electric transport systems on the basis of fuzzy logic application. Archives of Transport, 42(2), 53-63. doi:10.5604/01.3001.0010.0527 (in English)

Shvets, A. O., & Bolotov, О. О. (2019). Influence of loads from the axis of a gondola car on its dynamic indicators and railroad tracks. Science and Transport Progress, 1(79), 151-166. doi: 10.15802/stp2019/158127 (in English)

Wu, H. (2006). Effects of wheel and rail profiles on vehicle performance. Vehicle System Dynamics, 44(sup1), 541-550. doi: 10.1080/00423110600875393 (in English)

Wu, Q., Spiryagin, M., & Cole, C. (2016). Longitudinal train dynamics: an overview. Vehicle System Dynamics, 54(12), 1688-1714. doi: 10.1080/00423114.2016.1228988 (in English)


GOST Style Citations


  1. Даніленко, Е. І. Залізнична колія : підручник для вищ. навч. закл. : у 2 т. / Е. І. Даніленко. – Київ : Інпрес, 2010. – Т. 1. – 528 с.
  2. Данович, В. Д. Математическая модель пространственных колебаний сцепа пяти вагонов, движущихся по прямолинейному участку пути / В. Д. Данович, А. А. Малышева // Транспорт. Нагруженность и прочность подвижного состава : сб. науч. тр. / Днепропетр. гос. техн. ун-т ж.-д. трансп. – Днепропетровск, 1998. – С. 62–69.
  3. Данович, В. Д. Пространственные колебания вагонов на инерционном основании : дис. д-ра техн. наук / Данович Виктор Данилович ; Днепропетр. ин-т инж. ж.-д. трансп. – Днепропетровск, 1981. – 465 с.
  4. ДСТУ ГОСТ 33211:2017. Вагони вантажні. Вимоги до міцності та динамічних якостей (ГОСТ 33211-2014, IDТ). – Введ. 2017–07–01. – Київ : УкрНДНЦ, 2017. – 58 с.
  5. Мугинштейн, Л. А. Влияние продольных сил на опасность сходов порожних вагонов в поездах /Л. А. Мугинштейн, Ю. С. Ромен // Вестник ВНИИЖТ. – 2011. – № 3. – С. 3–6.
  6. Определение допустимых сил при оценке устойчивости грузовых вагонов от выжимания в поездах / А. А. Швец, К. И. Железнов, А. С. Акулов, А. Н. Заболотный, Е. В. Чабанюк // Наука та прогрес транспорту. – 2016. – № 1 (61). – С. 180–192. doi: 10.15802/stp2016/61045
  7. Разработка рекомендаций по снижению износа колес и рельсов за счет снижения сил динамического взаимодействия железнодорожных экипажей и пути с учетом стационарных и нестационарных режимов движения. В 3 т. Т. 3. Натурные исследования факторов, влияющих на повышенный износ рельсов и гребней колес грузовых вагонов : отчет о НИР (заключ.) : 91.134.95.97/379.95.97 ЦТех / Днепропетр. нац. ун-т ж. д. трансп. им. акад. В. Лазаряна ; рук. Блохин Е. П., Пшинько А. Н. ; исп.: Данович В. Д. [и др.]. – Днепропетровск, 1998. – 190 с. – № ГР 0196U023134. – Инв. № 416(III).
  8. Швець, А. О. Вплив режиму гальмування на знос коліс та стійкість вантажного рухомого складу /А. О. Швець, Болотов О. М., Л. С. Сапарова // Вісник сертифікації залізничного транспорту. – 2018. – № 4 (50). – С. 68–82.
  9. Шимановский, А. О. Влияние зазоров в автосцепных устройствах на продольные силы в межвагонных соединениях однородного поезда / А. О. Шимановский, П. А. Сахаров // Механика машин, механизмов и материалов. – 2019. – № 2 (47). – С. 42–50.
  10. Шимановский, А. О. Моделирование продольной динамики поезда в среде программного комплекса MSC.ADAMS / А. О. Шимановский, П. А. Сахаров, А. В. Коваленко // Актуальные вопросы машиноведения. – 2018. – № 7. – С. 75–78.
  11. Determination of the issue concerning the lift resistance factor of lightweight car / A. O. Shvets, К. I. Zhelieznov, А. S. Аkulov, О. M. Zabolotnyi, Y. V. Chabaniuk // Наука та прогрес транспорту. – 2015. – № 6 (60). – С. 134–148. doi: 10.15802/stp2015/57098
  12. Effect of the state of car running gears and railway track on wheel and rail wear / E. P. Blokhin, O. M. Pshinko, V. D. Danovich, M. L. Korotenko // Railway Bogies and Running Gears : Proc. of the 4th Intern. Conf. / Technical University of Budapest. – Budapest, 1998. – P. 313–323.
  13. Kurhan, D. Determination of Load for Quasi-static Calculations of Railway Track Stress-strain State / D. Kurhan // Acta Technica Jaurinensis. – 2016. – Vol. 9. – Іss. 1. – Р. 83–96. doi: 10.14513/actatechjaur.v9.n1.400
  14. Modeling, simulation and applications of longitudinal train dynamics / C. Cole, M. Spiryagin, Q. Wu, Y. Q. Sun // Vehicle System Dynamics. – 2017. – Vol. 55. – Іss. 10. – P. 1498–1571. doi: 10.1080/00423114.2017.1330484
  15. McKinnon, A. C. Freight Transport Deceleration: Its Possible Contribution to the Decarbonisation of Logistics / A. C. McKinnon // Transport Reviews. – 2016. – Vol. 36. – Iss. 4. – P. 418–436. doi: 10.1080/01441647.2015.1137992
  16. Navarrete, J. A. Experimental and theoretical modeling of cargo sloshing during braking / J. A. Navarrete, F. Otremba // ASME International Mechanical Engineering Congress and Exposition (Phoenix, Arizona, USA, Nov. 11–17, 2016). – Phoenix, 2016. – Vol. 4B : Dynamics, Vibration, and Control.doi: 10.1115/imece2016-65698
  17. Qi, Zh. Simulation of longitudinal dynamics of long freight trains in positioning operations / Zh. Qi, Zh. Huang, X. Kong // Journal Vehicle System Dynamics International Journal of Vehicle Mechanics and Mobility. – 2012. – Vol. 50. – Іss. 9. – Р. 1409–1433. doi: 10.1080/00423114.2012.661063
  18. Razinkin, N. E. The influence of additional discharge of the brake line on the longitudinal dynamics of the train during braking / N. E. Razinkin, N. I. Voronova, Y. D. Podlesnikov, S. N. Danilov // Journal of Mechanical Engineering Research and Developments. – 2019. – Vol. 42. – Іss. 3. – P. 6–9. doi: 10.26480/jmerd.03.2019.06.09
  19. Sablin, O. Rational distribution of excess regenerative energy in electric transport systems on the basis of fuzzy logic application / O. Sablin, V. Kuznetsov, V. Shinkarenko, A. Ivanov // Archives of Transport. – 2017. – № 42 (2). – P. 53–63. doi: 10.5604/01.3001.0010.0527
  20. Shvets, A. O. Influence of Loading from the Axle of a Gondola Car on its Dynamic Indicators and Railway Track / A. O. Shvets, О. О. Bolotov // Наука та прогрес транспорту. – 2019. – № 1 (79). – С. 151–166. – doi: 10.15802/stp2019/158127
  21. Wu, H. Effects of wheel and rail profiles on vehicle performance / H. Wu // Vehicle System Dynamics. – 2006. – Vol. 44. – Іss. sup1. – P. 541–550. doi: 10.1080/00423110600875393
  22. Wu, Q. Longitudinal train dynamics: an overview / Q. Wu, M. Spiryagin, C. Cole // Vehicle System Dynamics. – 2016. – Vol. 54. – Іss. 12. – P. 1688–1714. doi: 10.1080/00423114.2016.1228988




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)