DOI: https://doi.org/10.15802/stp2019/195831

REVIEW OF THE MODERN BALLASTED RAILWAY TRACKS’ SUBSTRUCTURE AND FURTHER INVESTIGATIONS

B. Eller, S. Fischer

Abstract


Purpose. The authors’ aim is to summarize the results of relevant international publications and, based on these, to give a comprehensive review about the modern ballasted tracks’ substructure. Methodology. This article is a start of a PhD research, which means it was proceeded by a secondary research. At first, the substructure and its protection layers were summarized, after that the geosynthetic cementious composite mat materials, especially the Concrete Canvas are discussed. Findings. The experiences of the geosynthetics’ and other protection layers’ functions, show that a possible using of the GCCM (geosynthetic cementious composite mat) under the ballast can be a good solution for renewing short sections in the railway tracks. Originality. One of the authors – namely Balázs Eller – is a PhD student at Szechenyi Istvan University in Gyor (Hungary). His research topic is the reinforcement possibilities of railway substructure with the usage of special (mainly cement-bonded) layers. This article was written to collect and summarize the up to date knowledge related to modern ballasted railway tracks’ substructure to be able to determine the following research ways and possibilities at this topic. The research plan will be sentenced in the near future, as well as the required laboratory and field tests will be prepared. Practical value. As expectation, after having executed the related research, the advantages and disadvantages of GCCM layers in the railway substructure will be able to defined, as well as factual deterioration process can be determined related to the ballasted tracks and their geometrical stability.


Keywords


substructure; subgrade; ballasted track; protection layer; concrete canvas

Full Text:

PDF HTML

References


Li, H., Chen, H., Liu, L., Zhang, F., Han, F., Lv, T., … & Yang, Y. (2016). Application design of concrete canvas (CC) in soil reinforced structure. Geotextiles and Geomembranes, 44(4), 557–567. doi: 10.1016/j.geotexmem.2016.03.003 (in English)

Berg, G., Anker, T., & Dehne, S. (2004). Langzeituntersuchungen von Weichen auf Fester Fahrbahn. ZEVrail Glasers Annalen, 1, 84-97. (in German)

Biabani, M. M., & Indraratna, B. (2015). An evaluation of the interface behaviour of rail subballast stabilised with geogrids and geomembranes. Geotextiles and Geomembranes, 43(3), 240-249. doi: 10.1016/j.geotexmem.2015.04.002 (in English)

Brown, S. F., Kwan, J., & Thom, N. H. (2007). Identifying the key parameters that influence geogrid reinforcement of railway ballast. Geotextiles and Geomembranes, 25(6), 326-335. doi: 10.1016/j.geotexmem.2007.06.003 (in English)

Concrete Canvas Ltd. Retrieved from https://www.concretecanvas.com.

D’Andrea, A., Loprencipe, G., & Xhixha, E. (2012). Vibration induced by rail traffic: evaluation of attenuation properties in a bituminous sub-ballast layer. Procedia-Social and Behavioral Sciences, 53, 245-255. doi: 10.1016/j.sbspro.2012.09.877 (in English)

Li, H., Chen, H., Li, X., & Zhang, F. (2018). Design and construction application of concrete canvas for slope protection. Powder Technology, 344, 937-946. doi: 10.1016/j.powtec.2018.12.075 (in English)

Ebrahimi, A., Tinjum, J. M., & Edil, T. B. (2014). Maintenance Model for Railway Substructure. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 45(1), 48-55.

Shushu, L., Huang H., Qiu T., & Kwon, J. (2016). Effect of geogrid on railroad ballast studied 2 by «SmartRock». Transportation Research Board Annual Meeting : Conference paper (2016, Washington D. C.). Washington, D.C., 1-14.

Eller, B. (2016). Efficiency of the asphalt protection layer, cataloguing of its failures and technological suggestion for the renewing of the Dombóvár-Godisa railway track section. Dissertation submitted for the degree of Master of Science in Engineering Mechanics. Széchenyi István University.

Cai, D., Yan, H., Yao, J., Cui, Y., & Chen, F. (2016). Engineering Test Research of XPS Insulation Structure Applied in High Speed Railway of Seasonal Frozen Soil Roadbed. Procedia Engineering, 143, 1519-1526. doi: 10.1016/j.proeng.2016.06.179 (in English)

European Technical Assessment ETA-19/0086 (2019). British Board of Agrément. Retrieved from http://szebeton.hu/new/images/resources/Eta-europai_muszaki_ertekeles19_0086i1.pdf. (in English)

Zhang, F., Chen, H., Li, X., Li, H., Lv, T., Zhang, W., & Yang, Y. (2017). Experimental study of the mechanical behavior of FRP-reinforced concrete canvas panels. Composite Structures, 176, 608-616. doi: 10.1016/j.compstruct.2017.05.072 (in English)

Jirawattanasomkul, T., Kongwang, N., Jongvivatsakul, P., & Likitlersuang, S. (2019). Finite element analysis of tensile and puncture behaviours of geosynthetic cementitious composite mat (GCCM). Composites Part B: Engineering, 165, 702-711. doi: 10.1016/j.compositesb.2019.02.037 (in English)

Fischer Sz., & Széchenyi I. E. A vasúti zúzottkő ágyazat alá beépített georácsok vágánygeometriát stabilizáló hatásának vizsgálata. PhD thesis. Civil Engineering. Győr, 2012. 148 p. doi: 10.13140/RG.2.1.4958.9921 (in Hungarian)

Frenzel, Jürgen, & Frenzel, Jörg. (2010). Vier Jahrzehnte Feste Fahrbahn System Sato auf Asphalttragschicht. Der Eisenbahningenieur in German, 61(9), 54-62. (in German)

Freudenstein, S., & Ripke, B. (2007). Feste Fahrbahn auf Asphalt – System GETRAC nach 10 Jahren Betrieb. ETR-Eisenbahntechnische Rundschau, 9, 539-544. (in German)

Gönczi, E. (2014). Radarral detektálható geotextília alkalmazása a vasúti alépítményben. Sínek Világa, 56(3), 21-24. (in Hungarian)

Gönczi, E., & Sándorné Óré, E. (2016). Radarral detektálható geotextília diagnosztikai tapasztalatai. Sínek Világa, 58(3), 23-26. (in Hungarian)

Gönczi, E., & Sándorné Óré, E. (2016). Radarral detektálható geotextília diagnosztikai tapasztalatai. 2 rész. Sínek Világa, 59(5), 29-33. (in Hungarian)

Horvát, F., Fischer, Sz., & Major Z. (2013). Evaluation of railway track geometry stabilisation effect of geogrid layers under ballast on the basis of laboratory multi-level shear box tests. Acta Technica Jaurinensis, 6(2), 21-44. (in English)

Han, F., Chen, H., Li, X., Bao, B., Lv, T., Zhang, W., & Hui Duan, W. (2015). Improvement of mechanical properties of concrete canvas by anhydrite-modified calcium sulfoaluminate cement. Journal of Composite Materials, 50(14), 1937-1950. doi: 10.1177/0021998315597743 (in English)

Indraratna, B., Shahin, M. A., & Salim, W. (2007). Stabilisation of granular media and formation soil using geosynthetics with special reference to railway engineering. Journal of Ground Improvement Proceedings of the Institution of Civil Engineers-Ground Improvement, 11(1), 27-44. doi: 10.1680/grim.2007.11.1.27 (in English)

Han, F., Chen, H., Zhang, W., Lv, T., & Yang, Y. (2016). Influence of 3D spacer fabric on drying shrinkage of concrete canvas. Journal of Industrial Textiles, 45(6), 1457-1476. doi: 10.1177/1528083714562087 (in English)

Han, F., Chen, H., Jiang, K., Zhang, W., Lv, T., & Yang, Y. (2014). Influences of geometric patterns of 3D spacer fabric on tensile behavior of concrete canvas. Construction and Building Materials, 65, 620-629. doi: 10.1016/j.conbuildmat.2014.05.041 (in English)

Fuggini, C., Zangani, D., Wosniok, A., Krebber, K., Franitza, P., Gabino, L., & Weigand, F. (2016). Innovative approach in the use of geotextiles for failures prevention in railway embankments. Transportation Research Procedia, 14, 1875-1883. doi: 10.1016/j.trpro.2016.05.154 (In English)

Kézdi, Á., & Markó, I. (1974). Közlekedési földművek víztelenítése. Műszaki Könyvkiadó. (in Hungarian)

Larsson, D. (2004). A Study of the Track Degradation Process Related to Changes in Railway Traffic. Luleå University of Technology, Luleå. (in English)

Li, D., & Selig, E. T. (1994). Evaluation of Railway Subgrade Problems. Transportation research Record, 1489, 17-23. (in English)

Lichtberger, B. (2005). Track compendium: Formation, Permanent Way, Maintenance, Economics. Hamburg: Eurailpress Tetzlaff-Hestra GmbH & Co. (in English)

Momoya, Y., Horikee, T., & Ando, K. (2002). Development of Solid Bed Track on Asphalt Pavement. Quarterly Report of RTRI, 43(3), 113-118. doi: 10.2219/rtriqr.43.113 (in English)

Momoya, Y. (2007). New Railway Roadbed Design. Railway Technology Avalanche, 20, 118. (in English)

Nurmikolu, A., & Kolisoja, P. (2005). Extruded polystyrene (XPS) foam frost insulation boards in railway structures. 16th International Conference on Soil Mechanics and Geotechnical Engineering, 1761-1764.doi: 10.3233/978-1-61499-656-9-1761 (in English)

Fischer, Sz., Eller, B., Kada, Z., & Németh, A. (2015). Railway Construction. Universitas-Győr Nonprofit Kft. (in English)

Raymond, G. P. (1999). Railway rehabilitation geotextiles. Geotextiles and Geomembranes, 17(4), 213-230. doi: 10.1016/s0266-1144(99)00002-3 (in English)

Hudson, A., Watson, G., Le Pen, L., & Powrie, W. (2016). Remediation of Mud Pumping on a Ballasted Railway Track. Procedia Engineering, 143, 1043-1050. doi: 10.1016/j.proeng.2016.06.103 (in English)

Rose, J., Teixeira, P., & Veit, P. (2011). International design practices, applications, and performances of asphalt/bituminous railway trackbeds. Georail 2011: International symposium railway geotechnical engineering, Paris, 1-23. (in English)

Rose, J., & Lees, H. M. (2008). Long-Term Assessment of Asphalt Trackbed Component Materials’ Properties and Performance. AREMA Annual Conference: Conference Paper, Salt Lake City, Utah, 1-26.

Selig, E. T., & Cantrell, D. D. (2001). Track Substructure Maintenance-From Theory to Practice. American Railway Engineering and Maintenance-of-Way Association Annual Conference: Conference paper. Chicago, 1-15. (in English)

Selig, E. T, & Waters, J. M. (1984). Track geotechnology and substructure management. London. (in English)

Stoltz, G., Delmas P., & Barral, C. (2019). Comparison of the behaviour of various geotextiles used in the filtration of clayey sludge. Geotextiles and Geomembranes, 47(2), 230-242. doi: 10.1016/j.geotexmem.2018.12.008 (in English)

Szengofszky, O. (2009). Hogyan szüntessük meg a lassújeleket? Sínek Világa, 3, 37-39. (in Hungarian)

Tensar Brochure (2010). Mechanical stabilisation of track ballast and sub-ballast. Tensar International Limited Units, Blackburn, UK. Retrieved from www.tensar.hu. (in Hungarian)

Utasítás: Vasúti alépítmény tervezése, építése, karbantartása és felújítása. Magyar Államvasutak ZRT. Budapest, 2014. (in Hungarian)

Vasútépítés és pályafenntartás I-II. Magyar Államvasutak ZRT. – Budapest, 1999. (in Hungarian)


GOST Style Citations


  1. Application design of concrete canvas (CC) in soil reinforced structure / H. Li, H. Chen, L. Liu, F. Zhang, F. Han, T. Lv, W. Zhang, Y. Yang // Geotextiles and Geomembranes. – 2016. – Vol. 44. – Iss. 4. – P. 557–567. doi: 10.1016/j.geotexmem.2016.03.003
  2. Berg, G. Langzeituntersuchungen von Weichen auf Fester Fahrbahn / G. Berg, T. Anker, S. Dehne // ZEVrail Glasers Annalen – 2004. – Vol. 1. – P. 84–97.
  3. Biabani, M. M. An evaluation of the interface behaviour of rail subballast stabilised with geogrids and geomembranes / M. M. Biabani, B. Indraratna // Geotextiles and Geomembranes. – 2015. – Vol. 43. – Iss. 3. – P. 240–249. doi: 10.1016/j.geotexmem.2015.04.002
  4. Brown, S. F. Identifying the key parameters that influence geogrid reinforcement of railway ballast / S. F. Brown, J. Kwan, N. H. Thom // Geotextiles and Geomembranes. – 2007. – Vol. 25. – Iss. 6. –P. 326–335. doi: 10.1016/j.geotexmem.2007.06.003
  5. Concrete Canvas Ltd [Electronic resource] / Available at: https://www.concretecanvas.com – Accessed: 15.11.2019.
  6. D’Andrea, A. Vibration induced by rail traffic: evaluation of attenuation properties in a bituminous sub-ballast layer / A. D’Andrea, G. Loprencipe, E. Xhixha // Procedia-Social and Behavioral Sciences. – 2012. – Vol. 53. – P. 245–255. doi: 10.1016/j.sbspro.2012.09.877
  7. Design and construction application of concrete canvas for slope protection / H. Li, H. Chen, X. Li, F. Zhang // Powder Technology. – 2018. – Vol. 344. – P. 937–946. doi: 10.1016/j.powtec.2018.12.075
  8. Ebrahimi, A. Maintenance Model for Railway Substructure / A. Ebrahimi, J. M. Tinjum, T. B. Edil // Geotechnical Engineering Journal of the SEAGS & AGSSEA. – 2014. – Vol. 45. – No. 1. – P. 48–55.
  9. Effect of geogrid on railroad ballast studied 2 by “SmartRock” / L. Shushu, H. Huang, T. Qiu, J. Kwon // Transportation Research Board Annual Meeting : Conference paper (2016, Washington D. C.). – Washington, 2016. – P. 1–14.
  10. Eller, B. Efficiency of the asphalt protection layer, cataloguing of its failures and technological suggestion for the renewing of the Dombóvár-Godisa railway track section / B. Eller // Dissertation submitted for the degree of Master of Science in Engineering Mechanics. – Széchenyi István University. – Győr, 2016.
  11. Engineering Test Research of XPS Insulation Structure Applied in High Speed Railway of Seasonal Frozen Soil Roadbed / D. Cai, H. Yan, J. Yao, Y. Cui, F. Chen // Procedia Engineering. – 2016. – Vol. 143. – P. 1519–1526. doi: 10.1016/j.proeng.2016.06.179
  12. European Technical Assessment ETA-19/0086 (2019) [Electronic resource] / British Board of Agrément // Available at: http://szebeton.hu/new/images/resources/Eta-europai_muszaki_ertekeles19_0086i1.pdf – Accessed: 15.11.2019.
  13. Experimental study of the mechanical behavior of FRP-reinforced concrete canvas panels / F. Zhang, H. Chen, X. Li, H. Li, T. Lv, W. Zhang, Y. Yang // Composite Structures. – 2017. – Vol. 176. – P. 608–616. doi: 10.1016/j.compstruct.2017.05.072
  14. Finite element analysis of tensile and puncture behaviours of geosynthetic cementitious composite mat (GCCM) / T. Jirawattanasomkul, N. Kongwang, P. Jongvivatsakul, S. Likitlersuang // Composites Part B: Engineering. – 2019. – Vol. 165. – P. 702–711. doi: 10.1016/j.compositesb.2019.02.037
  15. Fischer, Sz. A vasúti zúzottkő ágyazat alá beépített georácsok vágánygeometriát stabilizáló hatásának vizsgálata (in Hungarian) : PhD thesis : Civil Engineering / Szabolcs Fisher ; Széchenyi István Egyetem. – Győr, 2012. – 148 p. doi: 10.13140/RG.2.1.4958.9921
  16. Frenzel, Jürgen. Vier Jahrzehnte Feste Fahrbahn System Sato auf Asphalttragschicht / Jürgen Frenzel, Jörg Frenzel // Der Eisenbahningenieur. – 2010. – Vol. 61. – No. 9. – P. 54–62.
  17. Freudenstein, S. Feste Fahrbahn auf Asphalt – System GETRAC nach 10 Jahren Betrieb / S. Freudenstein, B. Ripke // ETR-Eisenbahntechnische Rundschau. – 2007. – Vol. 9. – P. 539–544.
  18. Gönczi, E. Radarral detektálható geotextília alkalmazása a vasúti alépítményben / E. Gönczi // Sínek Világa. – 2014. – Vol. 56. – No. 3. – P. 21–24.
  19. Gönczi, E. Radarral detektálható geotextília diagnosztikai tapasztalatai / E. Gönczi, E. Sándorné Óré // Sínek Világa. – 2016. – Vol. 58. – No. 3. – P. 23–26.
  20. Gönczi, E. Radarral detektálható geotextília diagnosztikai tapasztalatai. 2 rész / E. Gönczi, E. Sándorné Óré // Sínek Világa. – 2017. – Vol. 59. – No. 5. – P. 29–33.
  21. Horvát, F. Evaluation of railway track geometry stabilisation effect of geogrid layers under ballast on the basis of laboratory multi-level shear box tests / F. Horvát, Sz. Fischer, Z. Major // Acta Technica Jaurinensis. – 2013. – Vol. 6. – No. 2. – P. 21–44.
  22. Improvement of mechanical properties of concrete canvas by anhydrite-modified calcium sulfoaluminate cement / F. Han, H. Chen, X. Li, B. Bao, T. Lv, W. Zhang, W. Hui Duan // Journal of Composite Materials. – 2015. – Vol. 50. – No. 14. – P. 1937–1950. doi: 10.1177/0021998315597743
  23. Indraratna, B. Stabilisation of granular media and formation soil using geosynthetics with special reference to railway engineering / B. Indraratna, M. A. Shahin, W. Salim // Proceedings of the Institution of Civil Engineers-Ground Improvement. – 2007. – Vol. 11. – Iss. 1. – P. 27–44. doi: 10.1680/grim.2007.11.1.27
  24. Influence of 3D spacer fabric on drying shrinkage of concrete canvas / F. Han, H. Chen, W. Zhang, T. Lv, Y. Yang // Journal of Industrial Textiles. – 2016. – Vol. 45. – No. 6. – P. 1457–1476. doi: 10.1177/1528083714562087
  25. Influences of geometric patterns of 3D spacer fabric on tensile behavior of concrete canvas / F. Han, H. Chen, K. Jiang, W. Zhang, T. Lv, Y. Yang // Construction and Building Materials. – 2014. – Vol. 65. – P. 620–629. doi: 10.1016/j.conbuildmat.2014.05.041
  26. Innovative approach in the use of geotextiles for failures prevention in railway embankments / C. Fuggini, D. Zangani, A. Wosniok, K. Krebber, P. Franitza, L. Gabino, F. Weigand // Transportation Research Procedia. – 2016. – Vol. 14. – P. 1875–1883. doi: 10.1016/j.trpro.2016.05.154
  27. Kézdi, Á. Közlekedési földművek víztelenítése / Á. Kézdi, I. Markó // Műszaki Könyvkiadó. – Budapest, 1974. – 298 p.
  28. Larsson, D. A Study of the Track Degradation Process Related to Changes in Railway Traffic : Licentiate Thesis / D. Larsson / Luleå University of Technology. – Luleå, 2004. – 53 p.
  29. Li, D. Evaluation of Railway Subgrade Problems / D. Li, E.T. Selig // Transportation research Record. – 1994. – No. 1489. – P. 17–23.
  30. Lichtberger, B. Track compendium: Formation, Permanent Way, Maintenance, Economics / В. Lichtberger. – Hamburg : Eurailpress Tetzlaff-Hestra GmbH & Co, 2005. – 634 р.
  31. Momoya, Y. Development of Solid Bed Track on Asphalt Pavement / Y. Momoya, T. Horikee, K. Ando // Quarterly Report of RTRI. – 2002. – Vol. 43. – Iss. 3. – P. 113–118. doi: 10.2219/rtriqr.43.113
  32. Momoya, Y. New Railway Roadbed Design / Y. Momoya // Railway Technology Avalanche. – 2007. – Vol. 20. – P. 118.
  33. Nurmikolu, A. Extruded polystyrene (XPS) foam frost insulation boards in railway structures / A. Nurmikolu A., P. Kolisoja // 16th International Conference on Soil Mechanics and Geotechnical Engineering : Conference paper (Osaka, Japan, 12 – 16 September 2005). – Osaka, 2005. – P. 1761–1764. doi: 10.3233/978-1-61499-656-9-1761
  34. Railway Construction / Sz. Fischer, B. Eller, Z. Kada, A. Németh // Universitas-Győr Nonprofit Kft. – 2015. – 334 p.
  35. Raymond, G. P. Railway rehabilitation geotextiles / G.P. Raymond // Geotextiles and Geomembranes. – 1999. – Vol. 17. – Iss. 4. – P. 213–230. doi: 10.1016/s0266-1144(99)00002-3
  36. Remediation of Mud Pumping on a Ballasted Railway Track / A. Hudson, G. Watson, L. Le Pen, W. Powrie // Procedia Engineering. – 2016. – Vol. 143 – P. 1043–1050. doi: 10.1016/j.proeng.2016.06.103
  37. Rose, J. International design practices, applications, and performances of asphalt/bituminous railway trackbeds / J. Rose, P. Teixeira, P. Veit // Georail 2011: International symposium railway geotechnical engineering (Cité des Sciences, Paris, France, 2011). – Paris, 2011. – P. 1–23.
  38. Rose, J. Long-Term Assessment of Asphalt Trackbed Component Materials’ Properties and Performance / J. Rose, H. M. Lees // AREMA Annual Conference: Conference Paper. – Salt Lake City, 2008. – P. 1–26.
  39. Selig, E. T. Track Substructure Maintenance-From Theory to Practice / E. T. Selig, D. D. Cantrell // American Railway Engineering and Maintenance-of-Way Association Annual Conference : Conference paper (Chicago, Illinois, September, 2001). – Chicago, 2001. – P. 1–15.
  40. Selig, E. T. Track geotechnology and substructure management / Selig, E. T, Waters, J. M. – London, 1994. – 456 p.
  41. Stoltz, G. Comparison of the behaviour of various geotextiles used in the filtration of clayey sludge: An experimental study / G. Stoltz, P. Delmas, C. Barral // Geotextiles and Geomembranes. – 2019. – Vol. 47. – Iss. 2. – P. 230–242. doi: 10.1016/j.geotexmem.2018.12.008
  42. Szengofszky, O. Hogyan szüntessük meg a lassújeleket? / O. Szengofszky // Sínek Világa. – 2014. – Vol.  3. – P. 37–39.
  43. Tensar Brochure. Mechanical stabilisation of track ballast and sub-ballast [Electronic resource] /. Tensar International Limited Units, Blackburn, UK. // Available at: www.tensar.hu – Accessed: 15.11.2019.
  44. Utasítás: Vasúti alépítmény tervezése, építése, karbantartása és felújítása / Magyar Államvasutak ZRT. – Budapest, 2014. – 279 с.
  45. Vasútépítés és pályafenntartás I–II / I. Mezei, F. Horváth (eds.) ; Magyar Államvasutak ZRT. – Budapest, 1999.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)