DOI: https://doi.org/10.15802/stp2020/199378

DYNAMIC PROPERTIES OF ONE-STOREY INDUSTRIAL BUILDING

D. V. Rozumenko, D. О. Bannikov

Abstract


Purpose. Recently, there has been a growing demand in Ukraine for the reuse of industrial buildings that have not been in exploitation for a certain period of time. At the same time, there are frequent cases when new technological equipment transfers significant dynamic loads to existing structures over a long period of time. Since the available data regarding the dynamic properties of industrial buildings are now practically absent, the main goal of the studies made by the authors is to evaluate and analyze own dynamic characteristics of a one-storey industrial building. Methodology. To achieve this goal, it was necessary first to choose the type of industrial building, which is common enough for the formulated conditions of the reuse possibility. A one-storey unheated industrial building with three purlins (purlins 15 + 15 + 6 m) with a steel supporting frame was taken as such a building. In the course of research, the cross sections of the main load-bearing elements were varied, as well as the schemes of their connection with each other. The calculations were carried out by the finite element method based on the Lira for Windows project complex. Findings. The obtained frequency spectra of the own dynamic characteristics for the main bearing structural elements of an industrial building of the type in question are in the range up to 30 Hz. Also, during the research, dependencies were obtained for changing this range for various cases of design decisions of the building. Originality. The research results presented in the publication make it possible to evaluate the range of the own dynamic characteristics of single-storey multipurlined unheated industrial buildings with the traditional structural solution of the steel frame. Practical value. The resulting range of the own dynamic characteristics of the industrial building of the type in question is quite dangerous for human health. The most unfavorable is the oscillation form of the columns, which actually involves the entire structural frame. Therefore, in the course of research, a special method was developed and tested to stabilize such vibrations «on the base» using flexible ropes.


Keywords


industrial building; modal analysis; dynamic characteristics; finite element method; complex Lira for Windows

References


Bannikov, D. O. (2017). Ocinka praktychnoji zbizhnosti rezuljtativ analizu plastynchastykh modelej v metodi skinchenykh elementiv. New Technologies in Construction, 32, 26-31. (in Ukrainian)

Bannikov, D. O., & Huslista, G. E. (2011). Otsenka skhodimosti napryazheniy v slozhnykh metallokonstruktsiyakh metodom konechnykh elementov, Metallurgical and Mining Industry, 4, 93-96. (in Russian)

Buga, P. G. (2013). Grazhdanskie, promyshlennye i selskokhozyaystvennye zdaniya: monografiya. Moscow: Kniga po trebovaniju. (in Russian)

Zakhyst vid nebezpechnykh gheologhichnykh procesiv, shkidlyvykh ekspluatacijnykh vplyviv, vid pozhezhi. Budivnyctvo u sejsmichnykh rajonakh Ukrajiny, 84 DBN В. 1.1-12:2006 (2006). (in Ukrainian)

Systema nadiinosti ta bezpeky v budivnytstvi. Navantazhennia i vplyvy. Normy proektuvannia, 70 DBN В.1.2-2:2006 (2007). (in Ukrainian)

Stalevi konstruktsii. Normy proektuvannia, 205 DBN В.2.6-198:2014 (2014). (in Ukrainian)

Kazakevitch, M. I., & Kuljabko, V. V. (1996). Vvedenie v vibroekologiyu zdaniy i sooruzheniy: monografiya. Dnepropetrovsk, PGASA. (in Russian)

Kazakevitch, M. I. (2011). Problems of cable stabilization. Metall Structures, 17(2), 63-84. (in Russian)

Redchenko, V. P. (2016). Dynamichni vyprobuvannja mostiv. Zaghaljni polozhennja, spektraljnyj analiz, dynamichni kharakterystyky: monoghrafija. Part 1. Dnipro, Porogi. (in Ukrainian)

Redchenko, V. P. (2017). Dynamichni vyprobuvannja mostiv. Viljni kolyvannja, modaljnyj kontrolj: monoghrafija. Part 2. Dnipro, Porogi. (in Ukrainian)

Strelec-Streleckij, E. B., Zhuravlev, A. V., & Vodop'janov, R. Ju. (2019). LIRA-SAPR. Kniga I. Osnovy. Kiev: LIRALAND. (in Russian)

Bofang, Z. (2018). The Finite Element Method: Fundamentals and Applications in Civil, Hydraulic, Mechanical and Aeronautical Engineering. Singapore: John Wiley & Sons Singapore Pte. Ltd. DOI: https://doi.org/10.1002/9781119107323 (in English)

Johnson, R. P. (2018). Composite Structures of Steel and Concrete: Beams, Slabs, Columns and Frames for Buildings. Wiley Blackwell. DOI: https://doi.org/10.1002/9781119401353 (in English)

Kruhlikova, N. G., & Bannikov, D. O. (2019). Rational design of shot-span industrial building roof for reconstruction conditions. Science and Transport Progress, 2(80), 144-152. DOI: https://doi.org/10.15802/stp2019/165853 (in English)

Neduzha, L. O., & Shvets, A. O. (2018). Theoretical and experimental research of strength properties of spine beam of freight cars. Science and Transport Progress, 1(73). 131-147. DOI: https://doi.org/10.15802/stp2018/123457 (in English)

Shames, I. H. (2017). Energy and Finite Element Methods In Structural Mechanics. New York: Routledge. DOI: https://doi.org/10.1201/9780203757567 (in English)

Singiresu, S. R. (2018). The Finite Element Method in Engineering: 6th Edition. Elsevier Inc. DOI: https://doi.org/10.1016/c2016-0-01493-6 (in English)


GOST Style Citations


  1. Банніков Д. О. Оцінка практичної збіжності результатів аналізу пластинчастих моделей в методі скінчених елементів. Нові технології в будівництві. 2017. № 32. С. 26–31.
  2. Банников Д. О., Гуслистая А. Э. Оценка сходимости напряжений в сложных металлоконструкциях методом конечных элементов. Металлургическая и горнорудная промышленность. 2011. № 4. С. 93–96.
  3. Буга П. Г. Гражданские, промышленные и сельскохозяйственные здания : монография. Москва : Книга по требованию, 2013. 349 с.
  4. ДБН В.1.1-12:2006. Захист від небезпечних геологічних процесів, шкідливих експлуатаційних впливів, від пожежі. Будівництво у сейсмічних районах України. [Чинний від 2007-01-02]. Вид. офіц. Київ : Мін. буд-ва, арх-ри та ЖКГ України, 2006. 84 с.
  5. ДБН В.1.2-2-2006 (зі змінами). Система надійності та безпеки в будівництві. Навантаження і впливи. Норми проектування. [Чинний від 2007-01-01]. Вид. офіц. Київ : Держбуд, 2007. 70 с.
  6. ДБН В.2.6-198:2014. Сталеві конструкції. Норми проектування. [Чинний від 2015-01-01]. Вид. офіц. Київ: Мінрегіон, 2014. 205 с.
  7. Казакевич М. И., Кулябко В. В. Введение в виброэкологию зданий и сооружений : монография. Днепропетровск : ПГАСА, 1996. 200 с.
  8. Казакевич М. И. Проблемы стабилизации вант. Металлические конструкции. 2011. Т. 17. № 2. С. 63–84.
  9. Редченко В. П. Динамічні випробування мостів. Частина 1 : Загальні положення, спектральний аналіз, динамічні характеристики : монографія. Дніпро : Пороги, 2016. 216 с.
  10. Редченко В. П. Динамічні випробування мостів. Частина 2 : Вільні коливання, модальний контроль : монографія. Дніпро : Пороги, 2017. 216 с.
  11. Стрелец–Стрелецкий Е. Б., Журавлев А. В., Водопьянов Р. Ю. ЛИРА–САПР. Книга I : Основы : монография / под ред. А. С. Городецкого. Киев : LIRALAND, 2019. 154 с.
  12. Bofang Z. The Finite Element Method. Fundamentals and Applications in Civil, Hydraulic, Mechanical and Aeronautical Engineering. Singapore : John Wiley & Sons Singapore Pte. Ltd. 2018. 843 p. DOI: https://doi.org/10.1002/9781119107323
  13. Johnson R. P. Composite Structures of Steel and Concrete: Beams, Slabs, Columns and Frames for Buildings : monograph. Wiley Blackwell, 2018. 265 p. DOI: https://doi.org/10.1002/9781119401353
  14. Kruhlikova N. G., Bannikov D. O. Rational design of shot-span industrial building roof for reconstruction conditions. Наука та прогрес транспорту. 2019. № 2 (80). P. 144–152. DOI: https://doi.org/10.15802/stp2019/165853
  15. Neduzha L. O., Shvets A. O. Theoretical and experimental research of strength properties of spine beam of freight cars. Наука та прогрес транспорту. 2018. № 1 (73). P. 131–147. DOI: https://doi.org/10.15802/stp2018/123457
  16. Shames I. H. Energy and Finite Element Methods In Structural Mechanics : monograph. New York : Routledge, 2017. 776 p. DOI: https://doi.org/10.1201/9780203757567
  17. Singiresu S. R. The Finite Element Method in Engineering : monograph. Elsevier Inc, 2018. 763 p. DOI: https://doi.org/10.1016/c2016-0-01493-6




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)