DOI: https://doi.org/10.15802/stp2020/199726

KINEMATIC SYNTHESIS OF THE GUIDE BEARING CENTRAL SLIDE-CRANK MECHANISM OF THE GRIPPING DEVICE BASED ON THE ENERGETIC MOTION TRANSMISSION INDEX

R. P. Pogrebnyak, M. R. Pohrebniak

Abstract


Purpose. The main objective of the work is to perform a kinematic analysis and synthesis of the known schemes of guide bearing central slide-crank mechanisms by the criterion of the energy index of motion transmission with the restriction by the allowable pressure angles in the sliding pairs and the smallest deviation of the trajectory from straightness in the approximation area. The article is also aimed to determine the scheme that best suits the synthesis conditions and to propose the gripping device mechanism on its basis. Methodology. This purpose is achieved by means of analytical kinematics of flat mechanisms of the mechanism and machine theory and mathematical modeling of the positions and movement of links. Findings. The design of mechanisms with different gripping devices providing a constant clamping force of objects of various thicknesses with a constant drive power and minimal energy costs can be performed by the criterion energetic motion transfer index (EMTI). On its basis the analysis of the known straight-guiding central crank-slider mechanisms with an extended connecting rod is carried out according to the criterion of the smallest deviation from the EMTI unit. It was found that the practical use of main part of these mechanisms according to this criterion is extremely limited or impossible. Using optimized synthesis of kinematic equations, it was obtained the only values of the relative parameters and the rotation ranges of the driving crank for the guide bearing central slide-crank mechanisms with an extended connecting rod that best meet the optimization criterion and satisfy the restrictions for pressure angles. Based on the optimal parameters of the guide bearing central slide-crank mechanism a paired parallelogram eleven-link mechanism is proposed that provides the rectilinear movement of the gripping elements with a constant speed and constant clamping force which is equal to the nominal driving force of the drive. Originality. For the first time, a qualitative and quantitative analysis of the known schemes of the guide bearing central slide-crank mechanisms according to the criterion of the energetic motion transfer index was carried out and the optimal synthesis of the gripping device according to the results of the analysis was performed. Practical value. Practical recommendations are suggested for choosing a scheme, relative sizes and arrangement of links of the guide bearing central slide-crank mechanism of the gripping mechanism that corresponds to the requirements of the optimization criterion and restriction by the allowable pressure angles.


Keywords


mechanical gripping device; guiding mechanism; energetic motion transfer index (EMTI); pressure angle

References


Artobolevskiy, I. I. (1971). Mekhanizmy v sovremennoy tekhnike. Moskow: Nauka. (in Russian)

Baranov, G. G. (1958). Kurs teorii mekhanizmov i mashin. Moskow: Mashgiz. (in Russian)

Borenshteyn, Y. P. (1982). Ispolnitelnye mekhanizmy zakhvatyvayushchikh ustroystv. Leningrad: Mashinostroyeniye. (in Russian)

Vorobov, Y. I., Yegorov, O. D., & Popov, S. A. (1988). Mekhanika promyshlennykh robotov. In K. V. Frolov, Y. I. Vorobov (Eds.). Raschet i proyektirovanie mekhanizmov. Moscow: Vysshaya shkola. (in Russian)

Kinytskyi, Ya. T., Traskovetska, L. M., & Miniailo, P. V. (2018). The investigation of the qualitative kinematic characteristics of the dwell linkage mechansms which are based on the straight-line path generating slider-crank mechanism. Herald of Khmelnytskyi national university, 3,12-15. (in Ukraіnian)

Kinytskyi, Ya. T., Kharzhevskyi, V. O., & Marchenko, M. V. (2013). Syntez vazhilnykh mekhanizmiv iz zupynkoiu vykhidnoi lanky na bazi napriamnykh mekhanizmiv: monohrafiia. Khmelnytskyi. (in Ukraіnian)

Kozhevnikov, S. N., Yesipenko, Ya. I., & Raskin, Ya. M. (1965). Mekhanizmy. Moskow: Mashinostroenie. (in Russian)

Kinytskyi, Ya. T., Miniailo, P. V. (2017). The kinematics of dwell linkage mechanisms which are based on the straight-line path generating slider-crank mechanism. Herald of Khmelnytskyi national university, 3, 14-17. (in Ukraіnian)

Kraynev, A. F. (1987). Slovar-spravochnik po mekhanizmam. Moskow: Mashinostroenie. (in Russian)

Pogrebnyak, R. P. (2018). Repeated Connections in the Schemes of Link Slider-crank Mechanism of Gripping Device. Science and Transport Progress, 4(76), 81-88. DOI: https://doi.org/10.15802/stp2018/140547 (in Ukraіnian)

Pogrebnyak, R. P. (2015). Poshuk ta usunennya nadlishkovikh zv'yazkiv u zakhoplyuyuchykh pristroyakh (zakhoplyuvachakh) mekhanizmiv manipulyatoriv. Metallurgicheskaya i gornorudnaya promyshlennost, 7, 91-95. (in Ukranian)

Pogrebnyak, R. P. (2017). Strukturniy analiz i kinematychniy sintez strizhnovogo kulisnogo mekhanizmu zakhvata. Pidyomno-transportna tekhnika, 2(54), 47-56. (in Ukranian)

Chelpanov, I. B., & Kolpashnikov, S. N. (1989). Skhvaty promyshlennykh robotov. Leningrad: Mashinostroyenie. (in Russian)

Bai, G., Kong, X., & Ritchie, J. M. (2017). Kinematic Analysis and Dimensional Synthesis of a Meso-Gripper. Journal of Mechanisms and Robotics, 9(3), 1-59. DOI: https://doi.org/10.1115/1.4035800 (in English)

Lanni, C., & Ceccarelli, M. (2009). An Optimization Problem Algorithm for Kinematic Design of Mechanisms for Two-finger Grippers. The Open Mechanical Engineering Journal 3(1), 49-62. DOI: https://doi.org/10.2174/1874155x00903010049 (in English)

Monkman, G. J., Hesse, S., Steinmann, R., & Schunk, H. (2007). Robot Grippers. Weinheim: Wiley-VCH. DOI: https://doi.org/10.1002/9783527610280 (in English)

Pogrebnyak, R. P. (2015). Structural analysis and rational design parallelogram arm gripping device. Theory and Practice Steel Industry,1/2, 124-126. (in English)

Rao, R. V., & Waghmare, G. (2015). Design Optimization of Robot Grippers Using Teaching-learning-based Optimization Algorithm. Advanced Robotics, 29(6), 431-447. DOI: https://doi.org/10.1080/01691864.2014.986524 (in English)

Rimon, E., & Burdick, J. (2019). The Kinematics and Mechanics of Grasping Mechanisms. The Mechanics of Robot Grasping. Cambridge: Cambridge University Press. DOI: https://doi.org/10.1017/9781108552011.020 (in English)

Lin, Wen-Yi, & Hsiao, Kuo-Mo (2016). Optimum synthesis of a 10-link gripping mechanism using new grasping indices. Journal of the Chinese Institute of Engineers, 39(7), 809-815. DOI: https://doi.org/10.1080/02533839.2016.1187086 (in English)


GOST Style Citations


  1. Артоболевский И. И. Механизмы в современной технике: в 7 т. Москва : Наука, 1971. т. 2 : Рычажные механизмы. 560 с.
  2. Баранов Г. Г. Курс теории механизмов и машин. Москва : Машгиз, 1958. 488 с.
  3. Боренштейн Ю. П. Исполнительные механизмы захватывающих устройств. Ленинград : Машиностроение, 1982. 302 с.
  4. Воробьев Е. И., Егоров О. Д., Попов С. А. Механика промышленных роботов : учеб. пособие для втузов: в 3 кн. Кн. 2 : Расчет и проектирование механизмов. Москва : Высшая школа, 1988. 367 с.
  5. Кіницький Я. Т., Трасковецька Л. М., Міняйло П. В. Дослідження якісних кінематичних характеристик важільних механізмів із зупинкою вихідної ланки, одержаних на базі прямолінійно напрямного кривошипно-повзунного механізму. Вісник ХНУ. 2018. Iss. 3. С. 12–15.
  6. Кіницький Я. Т., Міняйло П. В. Кінематика важільних механізмів із зупинкою вихідної ланки, одержаних на базі прямолінійно-напрямного кривошипно-повзунного механізму. Вісник ХНУ. 2017. Iss. 3. С. 14–17.
  7. Кіницький Я. Т., Харжевський В. О., Марченко М. В. Синтез важільних механізмів із зупинкою вихідної ланки на базі напрямних механізмів : монографія. Хмельницький, 2013. 432 с.
  8. Кожевников С. Н., Есипенко Я. И., Раскин Я. М. Механизмы. Москва : Машиностроение, 1965. 1059 с.
  9. Крайнев А. Ф. Словарь-справочник по механизмам. Москва : Машиностроение, 1987. 560 с.
  10. Погребняк Р. П. Повторювані зв’язки у схемах стрижньового повзунно-шатунного механізму захоплювального пристрою. Наука та прогрес транспорту. 2018. № 4 (76). С. 81–88. DOI: https://doi.org/10.15802/stp2018/140547
  11. Погребняк Р. П. Пошук та усунення надлишкових зв’язків у захоплюючих пристроях (захоплювачах) механізмів маніпуляторів. Металлургическая и горнорудная промышленность. 2015. № 7. С. 91–95.
  12. Погребняк Р. П. Структурний аналіз і кінематичний синтез спареного стрижньового кулісного механізму захвата робота. Підйомно-транспортна техніка. 2017. № 4 (56). С. 57–66.
  13. Челпанов И. Б., Колпашников С. Н. Схваты промышленных роботов. Ленинград : Машиностроение, 1989. 287 с.
  14. Bai G., Kong X., Ritchie J. M. Kinematic Analysis and Dimensional Synthesis of a Meso-Gripper. Journal of Mechanisms and Robotics. 2017. Vol. 9. Iss. 3. P. 1–59. DOI: https://doi.org/10.1115/1.4035800
  15. Lanni C., Ceccarelli M. An Optimization Problem Algorithm for Kinematic Design of Mechanisms for Two-finger Grippers. The Open Mechanical Engineering Journal. 2009. Vol. 3. Iss. 1. P. 49–62. DOI: https://doi.org/1874155X00903010049
  16. Monkman G. J., Hesse S., Steinmann R., Schunk H. Robot grippers. Weinheim : Wiley-VCH, 2007. 463 р. DOI: https://doi.org/10.1002/9783527610280
  17. Pogrebnyak R. P. Structural analysis and rational design parallelogram arm gripping device. Теория и практика металлургии. 2015. № 1/2. С. 123–125.
  18. Rao R. V., Waghmare G. Design Optimization of Robot Grippers Using Teaching-learning-based Optimization Algorithm. Advanced Robotics. 2015. Vol. 29. Iss. 6. Р. 431–447. DOI: https://doi.org/10.1080/01691864.2014.986524
  19. Rimon E., Burdick J. The Kinematics and Mechanics of Grasping Mechanisms. The Mechanics of Robot Grasping, 2019. Cambridge : Cambridge University Press. Р. 411–440. DOI:https://doi.org/10.1017/9781108552011.020
  20. Lin Wen-Yi, Hsiao Kuo-Mo. Optimum synthesis of a 10-link gripping mechanism using new grasping indices. Journal of the Chinese Institute of Engineers. 2016. Vol. 39. Iss. 7. Р. 809–815. DOI: https://doi.org/10.1080/02533839.2016.1187086




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)