DOI: https://doi.org/10.15802/stp2020/202612

WASTE WATER TREATMENT IN SPACE CONDITIONS

L. F. Dolyna, Y. O. Zhdan, D. A. Dolyna

Abstract


Purpose. The main purpose of the article is to develop a technology for wastewater treatment in space. Methodology. The studies were performed based on the analysis of Ukrainian and foreign scientific sources and reporting data on the specifics of water use at space stations and the treatment methods of the used waters (wastewaters). In addition to international experience, our own research was used to develop a technology for wastewater treatment in space. Findings. A comprehensive review of the issues related to wastewater treatment in space, allows us to conclude that it is necessary to regenerate water at International space stations (ISS). Indeed, to ensure the life support of the astronauts, a colossal amount of water is required, and its delivery to the ISS from the Earth is expensive. Originality. The authors of the article analyzed the operation of existing wastewater treatment facilities in space and made recommendations for their use at the ISS. The developed technology for the treatment of wastewater and drinking water in zero-gravity (space) is based on the use of various reactors. They can be made of various materials (metal, plastic, etc.); they do not contain non-standard equipment that requires factory manufacturing. Compactness, complete tightness and small dimensions of bio- and physicochemical reactors allow them to be installed within the ISS. The cleaning process is easy to manage and can be fully automated. Practical value. Water problems are central to the whole world, including in space. The ISS should have a system for the wastewater treatment and their closed use, since the supply of new water to stations significantly increases the cost of space exploration. Quality water is the health and well-being of people in space. Since there is no gravity in space, centrifugal forces (centrifuges) must be used to separate suspended particles from water.


Keywords


waste water treatment; space; wastewater treatment facilities; space water treatment technology; space life support system

References


Avstraliya planiruet dobyvat vodu na Lune. (2019). Naked Science, 46. Retrieved from https://naked- science.ru/article/cosmonautics/avstraliya-planiruet-dobyvat. (in Russian)

Aristov, N. I. (2017). Space food. Technologies. History and present. Aktualnyye problyemy aviatsii i kos-monavtiki, 3, 980-982. (in Russian)

Vodnye khroniki: Nauchnye novosti. (2019). Voda i vodnye tekhnologii, 2(92), 22. (in Russian)

Kanalizatsiia. Zovnishni merezhi ta sporudy. Osnovni polozhennia proektuvannia, 128 DBN V.2.5-75-2013. (2013). (in Ukrainian)

Dolina, L. F. (2003). Novye metody i oborudovaniya dlya obezzarazhivaniya stochnykh i prirodnykh vod: monografiya. Dnepropetrovsk: Kontinent. (in Russian)

Dolina, L. F. (2011). Ochistka stochnykh vod ot biogennykh elementov: monografiya. Dnepropetrovsk: Kontinent. (in Russian)

Dolina, L. F. (2008). Sovremennaya tekhnika i tekhnologiya dlya ochistki stochnykh vod ot soley tyazhelykhmetallov: monografiya. Dnipropetrovsk: Kontinent. (in Russian)

Salnikov, N. A., & Nikolaykina. N. E. (2016). Sanitary and hygienic water purification research for the water supply closed system of the flying apparatus. Civil Aviation High Technologies, 19(3), 157-165. (in Russian)

Sinyak, Yu. Ye. (2008). Aktovaya rech. Sistemy zhizneobespecheniya obitaemykh kosmicheskikh obektov. Moscow: IBMP RAN, 3-28. (in Russian)

Anderson, N. G. (1966). Zonal Centrifuges and Other Separation Systems. Science, 154(3745), 103-112. DOI: https://doi.org/10.1126/science.154.3745.103 (in English)

Bagrov, A. V., Leonov, V. A., & Kislitsky, M. I. (2019). Industrial mining of water ice in space. Aerospace Sphere Journal, 1(98), 76-81. DOI: https://doi.org/10.30981/2587-7992-2019-98-1-76-81 (in English)

Giorno, L., & Drioli, E. (2000). Biocatalityc membrane reactors: applications and perspectives. Trends of biotechnology, 18(8), 339-349. DOI: https://doi.org/10.1016/S0167-7799(00)01472-4 (in English)

Gupta, G. & Orbán, S. A. (2018). Water is life, life is water: (Un) sustainable use and management of water in the 21st century. Corvinus Journal of Sociology and Social Policy, 9(1), 81-100. DOI: https://doi.org/10.14267/CJSSP.2018.1.04 (in English)

LED light technology to purify water on airliners. (2019). Flight Global. Retrieved from https://www.flightglobal.com/systems-and-interiors/aix-led-light-technology-to-purify-water-on-airliners/132154.article (in English)

Wang, Y., & Pham, H. (2019). Water Treatment Plant Ancillary Facilities: Unsung Heroes of Hurricane Harvey. Journal-American Water Works Association, 111(8), 26-32. DOI: https://doi.org/10.1002/awwa.1339 (in English)

Westall, F., & Brack, A. (2018). The Importance of Water for Life. Space Science Reviews, 214(2), 1-23. DOI: https://doi.org/10.1007/s11214-018-0476-7 (in English)


GOST Style Citations


  1. Австралия планирует добывать воду на Луне. Naked Science. 2019. № 46. URL: https://naked-science.ru/article/cosmonautics/avstraliya-planiruet-dobyvat (дата обращения 09.01.2020)
  2. Аристов Н. И. Космическое питание. Технологии. История и современность. Актуальные проблемы авиации и космонавтики. 2017. Т. 3. С.980–982.
  3. Водные хроники : Научные новости. Вода и водные технологии. 2019. № 2 (92). 22 с.
  4. ДБН В.2.5-75-2013. Каналізація. Зовнішні мережі та споруди. Основні положення проектування. [На заміну СНиП 2.04.03-85; чинний від 2014-01-01]. Вид. офіц. Київ : МінрегіонУкраїни, 2013. 128 с.
  5. Долина Л. Ф. Новые методы и оборудования для обеззараживания сточных и природных вод : монография. Днепропетровск : Континент, 2003. 218 с.
  6. Долина Л. Ф. Очистка сточных вод от биогенных элементов :монография. Днепропетровск: Континент, 2011.115 с.
  7. Долина Л. Ф. Современная техника и технология для очистки сточных вод от солей тяжёлых металлов: монография.Днепропетровск : Континент, 2008. 254 с.
  8. Сальников Н. А. Исследование очистки санитарно-гигиенической воды в замкнутой системе водо- обеспечения летательных аппаратов. Научный вестник МГТУ ГА. 2016. Т. 19, № 3. С. 157–165.
  9. Синяк Ю. Е. Актовая речь. Системы жизнеобеспечения обитаемых космических объектов. Москва : ИБМП РАН, 2008. С. 3–28.
  10. Anderson N. G. Zonal Centrifuges and Other Separation Systems. Science. 1966. Vol. 154, Iss. 3745. P. 103–112. DOI: https://doi.org/10.1126/science.154.3745.103
  11. Bagrov A. V., Leonov V. A., Kislitsky M. I. Industrial Mining of water ice in space. Aerospace Sphere Journal. 2019. № 1 (98). P. 76–81. DOI: https://doi.org/10.30981/2587-7992-2019-98-1-76-81
  12. Giorno L., Drioli E. Biocatalityc membrane reactors: applications and perspectives. Trends of biotechnology. 2000. Vol. 18. Iss. 8. P. 339–349. DOI: https://doi.org/10.1016/S0167-7799(00)01472-4
  13. Gupta G. S., Orbán S. A. Water is life, life is water : (Un) sustainable use and management of water in the 21st century. Corvinus  Journal of  Sociology and Social Policy. 2018. Vol. 9, No 1.P. 81–100.
    DOI: https://doi.org/10.14267/CJSSP.2018.1.04
  14. LED light technology to purify water on airliners. Flight Global. 2019.
    URL: https://www.flightglobal.com/systems-and-interiors/aix-led-light-technology-to-purify-water-on-airliners/132154.article (дата обращения 09.01.2020)
  15. Wang Y., Pham H. Water Treatment Plant Ancillary Facilities: Unsung Heroes of Hurricane Harvey. Journal–American Water Works Association. 2019. Vol. 111.Iss. 8. P. 81–100. DOI: https://doi.org/10.1002/awwa.1339
  16. Westall F.,Brack, A. The Importance of  Water for Life. Space Science Review. 2018. Vol. 214. Iss. 2.
    P. 1–23. DOI: https://doi.org/10.1007/s11214-018-0476-7




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)