DOI: https://doi.org/10.15802/stp2020/203395

### EXPRESS MODEL FOR WATER TREATMENT PROCESS CALCULATION

V. D. Petrenko, M. I. Netesa, O. L. Tiutkin, O. V. Gromova, V. І. Shynkarenko, V. А. Kozachyna

#### Abstract

Purpose. The use of a physical experiment to study mass transfer processes in structures used in water supply and sewage systems requires considerable time and is very expensive. The aim of the work is to develop numerical models for a computational experiment to study the mass transfer process in sand traps. Methodology. For mathematical modeling of the mass transfer process in sand traps, the two-dimensional Navier-Stokes equations and the two-dimensional impurity mass transfer equation are used. For numerical integration of equations describing the motion of a viscous incompressible fluid, implicit difference splitting schemes are used. The unknown parameters at each step of the splitting were found by explicit dependencies. For the numerical integration of the two-dimensional mass transfer equation, an alternately triangular difference splitting scheme is used. Findings. To conduct a computational experiment, a specialized code was created on the basis of the constructed numerical model. The results of computational experiments on the study of mass transfer in sand traps with additional elements are presented. It was determined that water purification efficiency changes with installation of additional elements at the bottom of the sand trap. Originality. The constructed numerical models make it possible to quickly analyze and predict the efficiency of sand traps having a complex geometric shape. They also make it possible to take into account the flow hydrodynamics in the treatment plant. Practical value. The proposed numerical models can be used at the design stage of sewage treatment plants.

#### Keywords

water purification; numerical simulation; difference schemes; sand trap; water use; mathematical modeling

#### Full Text:

PDF (Українська) HTML (Українська)

#### References

Biliaiev, N. N., & Nagornaya, E. K. (2012). Matematicheskoye modelirovaniye massoperenosa v otstoynikakh sistem vodootvedeniya: monografiya. Dnepropetrovsk: Novaya ideologiya. (in Russian)

Biliaiev, N. N., & Kozachina, V. A. (2015). Modelirovaniye massoperenosa v gorizontalnykh otstoynikakh: monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)

Vasylenko, O. A., Hrabovskyi, P. O., Larkina, H. M., Polishchuk, O. V., & Prohulnyi, V. Y. (2010). Rekonstruktsiia i in-tensyfikatsiia sporud vodopostachannia ta vodovidvedennia: navchalnyi posibnyk. Kyiv: IVNVKP «Ukrheliotek». (in Ukrainian)

Kanalizatsiia. Zovnishni merezhi ta sporudy. Osnovni polozhennia proektuvannia, 128 DBN V.2.5-75-2013 (2013). (in Ukrainian)

Epoian, S. M., Kolotylo, V. D., & Drushliak, O. H. (2010). Vodopostachannia ta ochystka pryrodnykh vod: navchalnyi posibnyk. Xarkiv : Faktor. (in Ukrainian)

Oleynik, A. Y., & Airapetyan, T. S. (2015). The modeling of the clearance of waste waters from organic pollutions in bioreactors-aerotanks with suspended (free flow) and fixed biocenoses. Reports of the National Academy of Sciences of Ukraine, 5, 55-60. DOI: https://doi.org/10.15407/dopovidi2015.05.055 (in Ukrainian)

Alharbi, A. O. M. (2016). The biological treatment of wastewater: mathematical models. Bulletin of the Australian Mathematical Society, 94(2), 347-348. DOI: https://doi.org/10.1017/s0004972716000411 (in English)

Bakiri, Z., & Nacef, S. (2013). A simple model for secondary clarifier: application to wastewater treatment plant. Desalination and Water Treatment, 51(7-9), 1571-1576. DOI: https://doi.org/10.1080/19443994.2012.715073 (in English)

Bomba, A., Klymiuk, Y., Prysiazhniuk, I., Prysiazhniuk, O., & Safonyk, A. (2016). Mathematical modeling of wastewater treatment from multicomponent pollution by through microporous filling. AIP Conference Proceedings, 1773, 040003-1-040003-11. DOI: https://doi.org/10.1063/1.4964966 (in English)

Griborio, A. (2004). Secondary Clarifier Modeling: A Multi-Process Approach. Dissertation and Theses. USA, University of New Orleans Publ. (in English)

Młyński, D., Bugajski, P., & Młyńska, A. (2019). Application of the Mathematical Simulation Methods for the Assessment of the Wastewater Treatment Plant Operation Work Reliability. Water, 11(5), 873. DOI: https://doi.org/10.3390/w11050873 (in English)

#### GOST Style Citations

1. Беляев Н. Н., Нагорная Е. К. Математическое моделирование массопереноса в отстойниках систем водоотведения : монография. Днепропетровск : Новая идеология, 2012. 112 с.
2. Беляев Н. Н., Козачина В. А. Математическое моделирование массопереноса в горизонтальных отстойниках : монография. Днепропетровск : Акцент ПП, 2015. 115 с.
3. Василенко О. А., Грабовський П. О., Ларкіна Г. М., Поліщук О. В., Прогульний В. Й. Реконструкція і інтенсифікація споруд водопостачання та водовідведення : навч. посіб. Київ : ІВНВКП «Укргеліотек», 2010. 272 с.
4. ДБН В.2.5-75:2013. Каналізація. Зовнішні мережі та споруди. Основні положення проектування. [Чинний від 2014-01-01]. Київ : Мінрегіон України, 2013. 128 с.
5. Епоян С. М., Колотило В. Д., Друшляк О. Г. Водопостачання та очистка природних вод : навчальний посібник. Харків : Фактор, 2010. 192 с.
6. Олійник О. Я, Айрапетян Т. С. Моделювання очисних стічних вод від органічних забруднень в біореакторах-аеротенках зі зваженим (вільно плаваючим) і закріпленим біоценозом. Доповідь НАН України. 2015. № 5. С. 55–60. DOI: https://doi.org/10/15407/dopovidi2015.05.055
7. Alharbi, A. O. M. The biological treatment of wastewater: mathematical models. Bulletin of the Australian Mathematical Society. 2016. Vol. 94. Іss. 2. P. 347–348. DOI: https://doi.org/10.1017/S0004972716000411
8. Bakiri Z., Nacef S. A simple model for secondary clarifier: Application to wastewater treatment plant. Desalination and Water Treatment. 2013. Vol. 51. Iss. 7–9. P. 1571–1576. DOI: https://doi.org/10.1080/19443994.2012.715073
9. Bomba A., Klymiuk Y., Prysiazhniuk I., Prysiazhniuk O., Safonyk A. Mathematical modeling of wastewater treatment from multicomponent pollution by through microporous filling. AIP Conference Proceedings. 2016. Vol. 1773. P. 040003-1–040003-11. DOI: https://doi.org/10.1063/1.4964966
10. Griborio A. Secondary Clarifier Modeling: A Multi-Process Approach. Dissertation and Theses. University of New Orleans : USA, 2004. 440 p.
11. Młyński D., Bugajski P., Młyńska A. Application of the Mathematical Simulation Methods for the Assessment of the Wastewater Treatment Plant Operation Work Reliability. Water. 2019. Vol. 11. Iss. 5. P. 1–17. DOI: https://doi.org/10.3390/w11050873