DOI: https://doi.org/10.15802/stp2020/203404

STRENGTH DETERMINATION OF LOAD-BEARING STRUCTURE OF ARTICULATED FLATCAR OF ROUND PIPES

O. V. Fomin, A. O. Lovska

Abstract


Purpose. This study aims to determine the strength of the load-bearing structure of the articulated flatcar of round pipes. Methodology. A computer model of the load-bearing structure of an articulated flatcar of round pipes has been created. To study the dynamic loading of the load-bearing structure of the flatcar, mathematical modeling was performed. The calculation is made in a flat coordinates. The oscillations of twitching, pitching and bouncing are taken into account. The motion differential equations are solved in MathCad software. Findings. It was established that the accelerations that fall upon the load-bearing structure of the first section of the flatcar are 38.2 m/s², and the second – about 37.5 m/s². The obtained acceleration values are taken into account when determining the strength indicators of the flatcar load-bearing structure. The calculation is done using the finite element method in CosmosWorks software. It is taken into account that each section of the flatcar is loaded by two 20-foot containers. The results of the calculations made it possible to conclude that the maximum equivalent stresses occur in the cantilever parts of center sill and are about 200 MPa, i.e., they do not exceed the allowable ones. The maximal displacements in the structural node are fixed in the middle parts of the sections and are 3.8 mm, the maximum deformations are 2,3·10-3. Originality. A computer model has been developed to determine the strength of the load-bearing structure of articulated flatcar made of round pipes. The model allows determining the strength indicators of the flatcar load-bearing structure with longitudinal loading of the structure. Practical value. The conducted research will increase operation efficiency of combined transportations and create recommendations on modern designing of articulated flatcars.


Keywords


flatcar; articulated car; load-bearing structure; dynamic load; strength; container transportation

References


Vagony gruzovye. Trebovaniya k prochnosti i dinamicheskim kachestvam, 54 GOST 33211-2014 (2016). (in Russian)

Vagoni vantazhni. Zagalni vimogi do rozrahunkiv ta proektuvannya novih i modernizovanih vagoniv koliyi 1520 mm (nasamohidnih), 250 DSTU 7598:2014 (2015). (in Ukraіnian)

Lovska, A. O. (2017). Improvement of the supporting structure of platform car for higher efficiency of container transportations. Science and Transport Progress, 1(67), 168-183. DOI: https://doi.org/10.15802/stp2017/94313 (іn Ukrainian)

Bofang, Z. (2018). The finite element metod: Fundamentals and Applications in Civil, Hydraulic, Mechanical and Aeronautical engeneering. China: China Institute of water resources and gidropower research. DOI: https://doi.org/10.1002/9781119107323 (in English)

Fomin, O., Lovska, A., Kulbovskyi, I., Holub, H., Kozarchuk, I., & Kharuta, V. (2019). Determining the dynamic loading on a semi-wagon when fixing it with a viscous coupling to a ferry deck. Eastern-European Journal of Enterprise Technologies, 2(7(98)), 6-12. DOI: https://doi.org/10.15587/1729-4061.2019.160456 (in English)

Fomin, O., Lovska, A., Masliyev, V., Tsymbaliuk, A., & Burlutski, O. (2019). Determining strength indicators for the bearing structure of a covered wagon's body made from round pipes when transported by a railroad ferry. Eastern-European Journal of Enterprise Technologies, 1(7(97)), 33-40. DOI: https://doi.org/10.15587/1729-4061.2019.154282 (in English)

Ishchenko, V. M., Fedosov-Nikonov, D. V. (2017). Long Wheelbase Flat Wagons: Structural Strength. Metallurgical and Mining Industry, 8, 26-31. (in English)

Kondratiev, A. V., Gaidachuk, V. E., & Kharchenko, M. E. (2019). Relationships Between the Ultimate Strengths of Polymer Composites in Static Bending, Compression, and Tension. Mechanics of Composite Materials, 55(2), 259-266. DOI: https://doi.org/10.1007/s11029-019-09808-x (in English)

Kurowski, P. (2019). Engineering Analysis with SOLIDWORKS Simulation 2019. SDC Publications. DOI: https://doi.org/10.4271/9781630572372 (in English)

Lee, W. G., Kim, J.-S., Sun, S.-J., & Lim, J.-Y. (2016). The next generation material for lightweight railway car body structures: Magnesium alloys. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(1), 25-42. DOI: https://doi.org/10.1177/0954409716646140 (in English)

Lovska, A. (2018). Simulation of Loads on the Carrying Structure of an Articulated Flat Car in Combined Transportation. International Journal of Engineering & Technology, 7(4.3), 140-146. DOI: https://doi.org/10.14419/ijet.v7i4.3.19724 (in English)

Pɫaczek, M., Wróbel, A., & Buchacz, A. (2016). A concept of technology for freight wagons modernization. IOP Conference Series: Materials Science and Engineering, 161, 1-12. DOI: https://doi.org/10.1088/1757-899X/161/1/012107 (in English)

Reyes, A. (2017). Beginners guide to SolidWorks 2018. SDC Publications. (in English)

Shatunov, O. V., & Shvets, A. O. (2019). Study of dynamic indicators of flat wagon with load centre shift. Science and Transport Progress, 2(80), 127-143. DOI: https://doi.org/10.15802/stp2019/165160 (in English)

Šťastniak, P., Kurčík, P., & Pavlík, A. (2018). Design of a new railway wagon for intermodal transport with the adaptable loading platform. MATEC Web of Conferences, 235, 1-5. DOI: https://doi.org/10.1051/matecconf/201823500030 (in English)

Vatulia, G., Falendysh, A., Orel, Y., & Pavliuchenkov, M. (2017). Structural Improvements in a Tank Wagon with Modern Software Packages. Procedia Engineering, 187, 301-307. DOI: https://doi.org/10.1016/j.proeng.2017.04.379 (in English)

WBN Waggonbau Niesky GmbH. (2016). Developing a flexible platform of freight wagons. Niesky: WBN Waggonbau Niesky GmbH. (in English)

Weber, M., & Verma, G. (2015). SolidWorks Simulation 2015. Black Book. Cadcamcae Works.

Wiesław, K., Tadeusz, N., & Michał, S. (2016). Innovative Project of Prototype Railway Wagon and Intermodal Transport System. Transportation Research Procedia, 14, 615-624. DOI: https://doi.org/10.1016/j.trpro.2016.05.307 (in English)

Zhai, W., Han, Z., Chen, Z., Ling, L., & Zhu, S. (2019). Train–track–bridge dynamic interaction: a state-of-the-art review. Vehicle System Dynamics, 57(7), 984-1027. DOI: https://doi.org/10.1080/00423114.2019.1605085 (in English)


GOST Style Citations


  1. ГОСТ 33211-2014. Вагоны грузовые. Требования к прочности и динамическим качествам. [Действителен от 2016-07-01]. Москва, 2016. 54 с.
  2. ДСТУ 7598:2014. Вагони вантажні. Загальні вимоги до розрахунків та проектування нових і модернізованих вагонів колії 1520 мм (несамохідних). [Чинний від 2015-07-01]. Київ, 2015. 250 с.
  3. Ловська А. О. Удосконалення несучої конструкції вагона-платформи для підвищення ефективності контейнерних перевезень. Наука та прогрес транспорту. 2017. № 1 (67). С. 168–183. DOI: https://doi.org/10.18664/1994-7852.164.2016.92508
  4. Bofang Z. The finite element metod : Fundamentals and Applications in Civil, Hydraulic, Mechanical and Aeronautical engeneering. China : China Institute of water resources and gidropower research, 2018. 872 p. DOI: https://doi.org/10.1002/9781119107323
  5. Fomin O., Lovska A., Kulbovskyi I., Holub H., Kozarchuk I., Kharuta V. Determining the dynamic loading on a semi-wagon when fixing it with a viscous coupling to a ferry deck. Eastern-European Journal of Enterprise Technologies. 2019. Vol. 2. Iss. 7 (98). P. 6–12. DOI: https://doi.org/10.15587/17294061.2019.160456
  6. Fomin O., Lovska A., Masliyev V., Tsymbaliuk A., Burlutski O. Determining strength indicators for the bearing structure of a covered wagon's body made from round pipes when transported by a railroad ferry. Eastern-European Journal of Enterprise Technologies. 2019. Vol. 1. Iss. 7 (97). P. 33–40. DOI: https://doi.org/10.15587/1729-4061.2019.154282
  7. Ishchenko V. M., Fedosov-Nikonov D. V. Long Wheelbase Flat Wagons : Structural Strength. Metallurgical and Mining Industry. 2017. No. 8. P. 26–31.
  8. Kondratiev A. V., Gaidachuk V. E., Kharchenko M. E. Relationships between the ultimate strengths of polymer composites in static bending, compression, and tension. Mechanics of Composite Materials. 2019. Vol. 52/ Iss. 2. P. 259–266. DOI: https://doi.org/10.1007/s11029-019-09808-x
  9. Kurowski P. Engineering Analysis with SOLIDWORKS Simulation 2019. SDC Publications, 2019. 606 p. DOI: https://doi.org/10.4271/9781630572372
  10. Lee W. G., Kim J.-S., Sun S.-J., Lim J.-Y. The next generation material for lightweight railway car body structures: Magnesium alloys. Proceeding of the institution of Mechanical Engineers Part F : Journal of Rail and Rapid Transit. 2016. Vol. 232. Iss. 1. P. 25–42. DOI: https://doi.org/10.1177/0954409716646140
  11. Lovska A. Simulation of loads on the carrying structure of an articulated flat car in combined transportation. International Journal of Engineering & Technology. 2018. Vol. 7. Iss. 4.3. P. 140–146. DOI: https://doi.org/10.14419/ijet.v7i4.3.19724
  12. Pɫaczek M., Wróbel A., Buchacz A. A concept of technology for freight wagons modernization. IOP Conf. Series : Materials Science and Engineering. 2016. Vol. 161. P. 1–12. DOI: https://doi.org/10.1088/1757899X/161/1/012107
  13. Reyes A. Beginners guide to SolidWorks 2018. SDC Publications, 2017. 757 p.
  14. Shatunov O. V., Shvets A. O. Study of dynamic indicators of flat wagon with load centre shift. Наука та прогрес транспорту. 2019. № 2 (80). C. 127–143. DOI: https://doi.org/10.15802/stp2019/165160
  15. Šťastniak P., Kurčík P. Pavlík A. Design of a new railway wagon for intermodal transport with the adaptable loading platform. MATEC Web of Conferences. 2018. Vol. 235. P. 1–5. DOI: https://doi.org/10.1051/matecconf/201823500030
  16. Vatulia G., Falendysh A., Orel Y., Pavliuchenkov M. Structural improvements in a tank wagon with modern software packages. Procedia engineering. 2017. Vol. 187. P. 301–307. DOI: https://doi.org/10.1016/j.proeng.2017.04.379
  17. WBN Waggonbau Niesky GmbH : Developing a flexible platform of freight wagons. Intern. Edition. 2016. № 1. P. 46.
  18. Weber M., Verma G. SolidWorks Simulation 2015. Black Book. Cadcamcae Works. 2015. 398 p.
  19. Wiesław K., Tadeusz N., & Michał S. Innovative project of prototype railway wagon and intermodal transport system. Transport research procedia. 2016. Vol. 14. P. 615–624. DOI: https://doi.org/10.1016/j.trpro.2016.05.307
  20. Zhai W., Han Z., Chen Z., Ling L., & Zhu S. Train–track–bridge dynamic interaction : a state-of-the-art review. Vehicle System Dynamics. International Journal of Vehicle Mechanics and Mobility. 2019. Vol. 57. Iss. 7. P. 984–1027. DOI: https://doi.org/10.1080/00423114.2019.1605085




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)