DOI: https://doi.org/10.15802/stp2020/203456

INFORMATION APPROACH TO DETERMINING THE TRAFFIC ROUTE BY VEHICLES DRIVERS IN CITIES

Y. O. Davidich, I. V. Chumachenko, A. S. Galkin, N. V. Davidich, Y. I. Кush

Abstract


Purpose. Modeling the transport network, streamlining the development and planning of traffic flows, which is possible through the introduction of information technology, leads to better control of the transport system and transport operations. The study is aimed at gaining new knowledge on determining traffic routes for vehicle drivers in cities. Currently discovered patterns of drivers choosing traffic routes are offered for all drivers of vehicles, regardless of their individual characteristics. Methodology. When determining the patterns of drivers choosing the routes of vehicles in cities, it is proposed to conduct differentially depending on the individual characteristics of drivers, which are determined by the type of nervous system. Based on the analysis, factors were identified that affect the choice of traffic route for drivers. In order to fix the identified factors, a survey was conducted using a specially designed questionnaire. To take into account the individual characteristics of drivers using a typological questionnaire, the type of nervous system was determined. To determine the patterns of choice of traffic routes for drivers of vehicles, methods of regression analysis were used. Findings. Based on the data obtained from a survey of vehicle drivers, a model was developed for changing the correspondence share implemented by the drivers with the sanguine type of nervous system on the alternative traffic routes. A statistical evaluation of the resulting model indicates the admissibility of its use for predicting the parameters of traffic flows in urban sustainable development projects. Originality. For the first time, the authors conducted a study of the patterns of choice of traffic routes for drivers of vehicles, taking into account the individual characteristics of drivers, which are determined by the type of nervous system. Practical value. Based on the results obtained, it is possible to model the transport network, rationalize the development and plan traffic flows, which is possible through the introduction of information technologies. Modeling the traffic routes of vehicles makes it possible to analyze the throughput of highways and intersections. The introduction of information technology leads to better control of the transport system and transport operations.


Keywords


traffic flow; temperament; driving route; questioning; nervous system; adequacy; criteria; modeling; correlation; driver; car

References


Balamirzoev, A. G., Alieva, K. R., & Balamirzoeva, E. R (2013). Decision-making passenger traffic at the choice of the route of movement. Fundamental research, 4, 267-271. (in Russian)

Davidich, Y. A., & Ponkratov, D. P. (2006). The traffic trip distribution between alternative routes. Bulletin of Kremenchug State Polytechnic University, 2/2006(37), 86-88. (in Russian)

Dmytrychenko, M. F. (2007). Systemolohiia na transporti. (Vol. 4). Kiev: Znannia Ukrainy. (in Ukrainian)

Issledovanie svyazi tipa vysshey nervnoy deyatelnosti i svoystv temperamenta. Retrieved from http://www.refstar.ru/data/r/id.16907_1.html (in Russian)

Temperament i tip nervnoy sistemy. Temperament i stil raboty. Retrieved from http://www.detskiysad.ru/ped/ped243.html (in Russian)

Tipy nervnoy sistemy. Temperamenty. Retrieved from https://www.medglav.com/zdorovyy-chelovek/tipy-nervnoy-sistemy.html (in Russian)

Polishchuk, I. A., & Vydrenko, A. S. (1980). Atlas dlya eksperimentalnogo issledovaniya otkloneniy v psikhiche-skoy deyatelnosti cheloveka. Kiev: Zdorove. (in Russian)

Chumachenko, I., Galkin, A., Davidich, N., Kush, Y., & Litomin, I. (2020). Patterns of urban transport flows generation. Municipal economy of cities, 1(154), 248-252. DOI: https://doi.org/10.33042/2522-1809-2020-1-154-248-252 (in Ukrainian)

Shvetsov, V. I. (2003). Matematicheskoe modelirovanie transportnykh potokov. Mosсow: Institut sistemnogo analiza RAN. (in Russian)

Antoniou, C., Efthymiou, D., & Chaniotakis, E. (2020). Demand for Emerging Transportation Systems: Modeling Adoption, Satisfaction, and Mobility Patterns. Elsevier. (in English)

Cascetta, E. (2009). Transportation systems analysis: models and applications (Vol. 29). Springer Science & Business Media. DOI: https://doi.org/10.1007/978-0-387-75857-2 (in English)

Davidich, N., Galkin, A., Sabadash, V., Chumachenko, I., Melenchuk, T., & Davidich, Y. (2020). Projecting of Urban Transport Infrastructure Considering the Human Factor. Communications-Scientific Letters of the University of Zilina, 22(1), 84-94. DOI: https://doi.org/10.26552/com.c.2020.1.84-94

Fusco, G. (2017). Intelligent transport systems: Past, present and future directions. Nova Science Publisher. (in English)

Galkin, A., Davidich, N., Kush, Ye., Davidich, Yu., & Lobashov, O. (2018). Modelling Truck's Transportation Speed On The Route Considering Driver's State. Transportation Research Procedia, 30, 207-215. DOI: https://doi.org/10.1016/j.trpro.2018.09.023 (in English)

Kapski, D., Kasyanik, V., Lobashov, O., Volynets, A., Kaptsevich, O., & Galkin, A. (2019). Estimating the Parameters of Traffic Flows on the Basis of Processing of Localization Data on the Movement of Vehicles. Communications-Scientific letters of the University of Zilina, 21(2), 89-99. DOI: https://doi.org/10.26552/com.C.2019.2.89-99 (in English)


GOST Style Citations


  1. Баламирзоев А. Г., Алиева Х. Р., Баламирзоева Э. Р. Принятие решений пасажиропотоком по выбору маршрута передвижения. Фундаментальные исследования. 2013. № 4. С. 267–271.
  2. Давидич Ю. А., Понкратов Д. П. Распределение транспортных корреспонденций по альтернативным путям следования. Вісник КДПУ. 2006. Вип. 2/2006 (37). С. 86–88.
  3. Дмитриченко М. Ф. Системологія на транспорті. Книга IV : Організація дорожнього руху. Київ : Знання України, 2007. 452 с.
  4. Исследование связи типа высшей нервной деятельности и свойств темперамента. URL: http://www.refstar.ru/data/r/id.16907_1.html (дата звернення: 15.06.2020).
  5. Темперамент и тип нервной системы. Темперамент и стиль работы. URL: http://www.detskiysad.ru/ped/ped243.html (дата звернення: 15.06.2020).
  6. Типы нервной системы. Темпераменты. URL: https://www.medglav.com/zdorovyy-chelovek/tipy-nervnoy-sistemy.html (дата звернення: 15.06.2020).
  7. Полищук И. А., Выдренко А. С. Атлас для экспериментального исследования отклонений в психической деятельности человека. Киев : Здоровье, 1980. 91 с.
  8. Чумаченко І. В., Галкін А. С., Давідіч Н. В., Куш Є. І., Літомін Є. В. Закономірності формування транспортних потоків у містах. Комунальне господарство міст. 2020. Т. 1, № 154. С. 248–252. DOI: https://doi.org/10.33042/2522-1809-2020-1-154-248-252
  9. Швецов В. И. Математическое моделирование транспортных потоков. Москва : Институт системного анализа РАН, 2003. 189 с.
  10. Antoniou C., Efthymiou D., Chaniotakis E. Demand for Emerging Transportation Systems : Modeling Adoption, Satisfaction, and Mobility Patterns. Elsevier, 2020. 287 p.
  11. Cascetta E. Transportation systems analysis : models and applications. Springer Science & Business Media, 2009. Ch. 29. 742 p. DOI: https://doi.org/10.1007/978-0-387-75857-2
  12. Davidich N., Galkin A., Sabadash V., Chumachenko I., Melenchuk T., Davidich Y. Projecting of Urban Transport Infrastructure Considering the Human Factor. Communications – Scientific Letters of the University of Zilina. 2020. Vol. 22. Iss. 1. P. 84–94. DOI: https://doi.org/10.26552/com.c.2020.1.84-94
  13. Fusco G. Intelligent transport systems : Past, present and future directions. Nova Science Publisher, 2017. 360 p.
  14. Galkin A., Davidich N., Kush Ye., Davidich Yu., Lobashov O. Modelling Truck's Transportation Speed On The Route Considering Driver's State. Transportation Research Procedia. Vol. 30. P. 207–215. DOI: https://doi.org/10.1016/j.trpro.2018.09.023
  15. Kapski D., Kasyanik V., Lobashov O., Volynets A., Kaptsevich O., Galkin A. Estimating the Parameters of Traffic Flows on the Basis of Processing of Localization Data on the Movement of Vehicles. Communications-Scientific letters of the University of Zilina. 2019. Vol. 21, № 2. P. 89–99. DOI: https://doi.org/10.26552/com.C.2019.2.89-99




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)