DOI: https://doi.org/10.15802/stp2020/212955

MODERN STRUCTURAL STEELS WITH TRIP-EFFECT

V. I. Zurnadzhy, V. S. Voloshyn, R. A. Kussa, V. G. Efremenko, A. V. Dzherenova, O. V. Tsvetkova

Abstract


Purpose. The aim of this work is to analyze the latest literature data on current state of the issue in the development of the chemical composition and heat treatment modes of steels that implement the TRIP effect under loading. Due to the deformation martensitic transformation of retained austenite, these steels have increased mechanical and operational properties with cost-saving alloying. Methodology. The information published over a long period of time in scientific literature, including domestic sources and high-rating foreign publications are used in this work. The information is systematized by the main TRIP-steels’ types and relates to their chemical composition and heat treatment technology. Findings. The article presents a retrospective of the research progress on the development of structural TRIP effect added steels namely: high-alloy single-phase metastable austenitic steels, as well as low-alloy multiphase TRIP-assisted steels, in which the TRIP effect plays an supporting role, as an additional strengthening and providing increased plasticity mechanism. The latter group of steels includes low alloy TRIP-assisted steels, δ-TRIP steels and maraging TRIP steels. The typical alloying schemes and applied heat treatment modes that make it possible to achieve the optimal phase-structural components ratio, the volume fraction and stability of retained austenite to deformation martensitic transformation in steels and, as a result, to provide an increased mechanical and operational properties were described. The key role of the carbide-free structure formation is noted, which is achieved by alloying with silicon and/or aluminum in providing high properties of steel. The prospects of using modern structural TRIP steels in the automotive and in the machine-building industry are shown. Recommendations for further research directions in this area are made. Originality. The article provides an analysis and systematization of relevant literature data on the development of technologies for the production of multiphase structural steels with retained metastable austenite, realizing the TRIP effect. Practical value. The results of the research can be used as reference materials in solving material design problems, as well as for educational purposes in the preparation of specialized professionals in engineering specialties.


Keywords


high-strength steels; metastable austenite; TRIP effect; heat treatment

References


Bogachev, I. N., & Mints, R. I. (1959). Kavitatsionnoe razrushenie zhelezouglerodistykh splavov. Moscow: Mashgiz. (in Russian)

Goldshteyn, M. I., Grachev, S. V., & Veksler, Yu. G. (1999). Spetsialnye stali. Moscow: MISIS. (in Russian)

Kurdyumov, G. V., Utevskiy, L. M., & Entin, R. I. (1977). Prevrashcheniya v zheleze i stali. Moscow: Nauka. (in Russian)

Malinov, L. S., & Malinov, V. L. Povyshenie iznosostoykosti staley i chugunov za schet polucheniya v ikh strukture metastabilnogo austenita i realizatsii effekta samozakalki pri nagruzhenii. Metal and casting of Ukraine, 1-2, 8-12. (in Russian)

Malinov, L. S., & Malinov, V. L. (2007). Ekonomnolegirovannye splavy s martensitnymi prevrashcheniyami i uprochnyayushchie tekhnologii: monografiya. Kharkiv : NNTs KhFTI. (in Russian)

Cheylyakh, A. P. (2009). Ekonomnolegirovannye metastabilnye splavy i uprochnyayushchie tekhnologii: monografiya. Mariupol: PGTU PGTU. (in Russian)

Bhadeshia, H. D. H., & Edmonds, D. V. (1979). The bainite transformation in a silicon steel. Metallurgical Transactions A, 10(7), 895-907. DOI: https://doi.org/10.1007/BF02658309 (in English)

Bhadeshia, H. K. (2002). TRIP-assisted steels? ISIJ international, 42(9), 1059-1060. DOI: https://doi.org/10.2355/isijinternational.42.1059 (in English)

Bhattacharyya, T., Singh, S. B., Das, S., Haldar, A., & Bhattacharjee, D. (2011). Development and characterisation of C–Mn–Al–Si–Nb TRIP aided steel. Materials Science and Engineering: A, 528(6), 2394-2400. DOI: https://doi.org/10.1016/j.msea.2010.11.054 (in English)

Bleck, W., Guo, X., & Ma, Y. (2017). The TRIP effect and its application in cold formable sheet steels. Steel Research International, 88(10), 1-10. DOI: https://doi.org/10.1002/srin.201700218 (in English)

Caballero, F. G., Miller, M. K., Babu, S. S., & Garcia-Mateo, C. (2007). Atomic scale observations of bainite transformation in a high carbon high silicon steel. Acta Materialia, 55(1), 381-390. DOI: https://doi.org/10.1016/j.actamat.2006.08.033 (in English)

Chatterjee, S., Murugananth, M., & Bhadeshia, H. K. D. H. (2007). δTRIP steel. Materials Science and Technology, 23(7), 819-827. DOI: https://doi.org/10.1179/174328407X179746 (in English)

De Cooman, B. C. (2004). Structure–properties relationship in TRIP steels containing carbide-free bainite. Current Opinion in Solid State and Materials Science, 8(3-4), 285-303. DOI: https://doi.org/10.1016/j.cossms.2004.10.002 (in English)

Efremenko, V. G., Zurnadzhi, V. I., Chabak, Y. G., Tsvetkova, O. V., & Dzherenova, A. V. (2017). Application of the QnP-treatment for increasing the wear resistance of low-alloy steel with 0.75% C. Materials Science, 53(1), 67-75. DOI: https://doi.org/10.1007/s11003-017-0045-3 (in English)

Fonstein, N. (2015). Advanced high strength sheet steels. Berlin: Springer. DOI: https://doi.org/10.1007/978-3-319-19165-2 (in English)

Garcia-Mateo, C., Caballero, F. G., & Bhadeshia, H. K. D. H. (2003). Acceleration of Low-temperature Bainite. ISIJ international, 43(11), 1821-1825. DOI: https://doi.org/10.2355/isijinternational.43.1821 (in English)

Garcia-Mateo, C., Caballero, F. G., Sourmail, T., Kuntz, M., Cornide, J., Smanio, V., & Elvira, R. (2012). Tensile behaviour of a nanocrystalline bainitic steel containing 3wt% silicon. Materials Science and Engineering: A, 549, 185-192. DOI: https://doi.org/10.1016/j.msea.2012.04.031 (in English)

Hashimoto, S., Ikeda, S., Sugimoto, K. I., & Miyake, S. (2004). Effects of Nb and Mo Addition to 0.2%C-1.5%Si-1.5%Mn Steel on Mechanical Properties of Hot Rolled TRIP-aided Steel Sheets. ISIJ International, 44(9), 1590-1598. DOI: https://doi.org/10.2355/isijinternational.44.1590 (in English)

Jacques, P., Delannay, F., Cornet, X., Harlet, P., & Ladriere, J. (1998). Enhancement of the mechanical properties of a low-carbon, low-silicon steel by formation of a multiphased microstructure containing retained austenite. Metallurgical and Materials Transactions A, 29(9), 2383-2393. DOI: https://doi.org/10.1007/s11661-998-0114-1 (in English)

Jacques, P. J., Girault, E., Mertens, A., Verlinden, B., Humbeeck, J. V., & Delannay, F. (2001). The developments of cold-rolled TRIP-assisted multiphase steels. Al-alloyed TRIP-assisted multiphase steels. ISIJ international, 41(9), 1068-1074. DOI: https://doi.org/10.2355/isijinternational.41.1068 (in English)

Jacques, P. J. (2004). Transformation-induced plasticity for high strength formable steels. Current Opinion in Solid State and Materials Science, 8(3-4), 259-265. DOI: https://doi.org/10.1016/j.cossms.2004.09.006 (in English)

Kim, S. J., Lee, C. G., Choi, I., & Lee, S. (2001). Effects of heat treatment and alloying elements on the microstructures and mechanical properties of 0.15 wt pct C transformation-induced plasticity-aided cold-rolled steel sheets. Metallurgical and Materials Transactions A, 32(3), 505-514.DOI: https://doi.org/10.1007/s11661-001-0067-0 (in English)

Koval’, A. D., Efremenko, V. G., Brykov, M. N., Andrushchenko, M. I., Kulikovskii, R. A., & Efremenko, A. V. (2012). Principles for developing grinding media with increased wear resistance. Part 1. Abrasive wear resistance of iron-based alloys. Journal of Friction and Wear, 33(1), 39-46. DOI: https://doi.org/10.3103/S1068366612010072 (in English)

Kučerová, L., Jirkova, H., & Mašek, B. (2014). The effect of alloying on mechanical properties of advanced high strength steels. Archives of Metallurgy and Materials, 59(3), 1189-1192. DOI: https://doi.org/10.2478/amm-2014-0206 (in English)

Lee, K. Y. (2008). Tensile properties of different chemical compositions for TRIP-assisted multiphase steel for automobile structures. International Journal of Automotive Technology, 9(1), 87-93. DOI: https://doi.org/10.1007/s12239-008-0011-z (in English)

Mahieu, J., Claessens, S., & De Cooman, B. C. (2001). Galvanizability of high-strength steels for automotive applications. Metallurgical and Materials Transactions, 32(11), 2905-2907. DOI: https://doi.org/10.1007/s11661-001-1042-5 (in English)

Mahieu, J., De Cooman, B. C., & Maki, J. (2002). Phase transformation and mechanical properties of Si-free CMnAl transformation-induced plasticity-aided steel. Metallurgical and Materials Transactions A, 33(8), 2573-2580. DOI: https://doi.org/10.1007/s11661-002-0378-9 (in English)

Maki, J., Mahieu, J., De Cooman, B. C., & Claessens, S. (2003). Galvanisability of silicon free CMnAl TRIP steels. Materials science and technology, 19(1), 125-131. DOI: https://doi.org/10.1179/026708303225009300 (in English)

Matsumura, O., Sakuma, Y., & Takechi, H. (1987). Trip and its kinetic aspects in austempered 0.4 C-1.5 Si-0.8 Mn steel. Scripta Metallurgica, 21(10), 1301-1306. DOI: https://doi.org/10.1016/0036-9748(87)90103-7 (in English)

Mintz, B. (2001). Hot dip galvanising of transformation induced plasticity and other intercritically annealed steels. International Materials Reviews, 46(4), 169-197. DOI: https://doi.org/10.1179/095066001771048754 (in English)

Raabe, D., Ponge, D., Dmitrieva, O., & Sander, B. (2009). Designing ultrahigh strength steels with good ductility by combining transformation induced plasticity and martensite aging. Advanced Engineering Materials, 11(7), 547-555. DOI: https://doi.org/10.1002/adem.200900061 (in English)

Raabe, D., Ponge, D., Dmitrieva, O., & Sander, B. (2009). Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility. Scripta Materialia, 60(12), 1141-1144. DOI: https://doi.org/10.1016/j.scriptamat.2009.02.062 (in English)

Sugimoto, K. I., Usui, N., Kobayashi, M., & Hashimoto, S. I. (1992). Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels. ISIJ International, 32(12), 1311-1318. DOI: https://doi.org/10.2355/isijinternational.32.1311 (in English)

Xu, D., Li, J., Meng, Q., Liu, Y., & Li, P. (2014). Effect of heating rate on microstructure and mechanical properties of TRIP-aided multiphase steel. Journal of alloys and compounds, 614, 94-101. DOI: https://doi.org/10.1016/j.jallcom.2014.06.075 (in English)

Yi, H. L., Chen, P., Hou, Z. Y., Hong, N., Cai, H. L., Xu, Y. B., Wang, G. D. (2013). A novel design: partitioning achieved by quenching and tempering (Q–T & P) in an aluminium-added low-density steel. Scripta Materialia, 68(6), 370-374. DOI: https://doi.org/10.1016/j.scriptamat.2012.10.018 (in English)

Yi, H. L., Ghosh, S. K., Liu, W. J., Lee, K. Y., & Bhadeshia, H. K. D. H. (2010). Non-equilibrium solidification and ferrite in δ-TRIP steel. Materials Science and Technology, 26(7), 817-823. DOI: https://doi.org/10.1179/174328409X428918 (in English)

Yi, H. L., Lee, K. Y., & Bhadeshia, H. K. D. H. (2011). Extraordinary ductility in Al-bearing δ-TRIP steel. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2125), 234-243. DOI: https://doi.org/10.1098/rspa.2010.0127 (in English)

Yi, H. L., Lee, K. Y., & Bhadeshia, H. K. D. H. (2011). Stabilisation of ferrite in hot rolled δ-TRIP steel. Materials Science and Technology, 27(2), 525-529. DOI: https://doi.org/10.1179/026708309X12506934374001 (in English)

Zhang, Z., Manabe, K. I., Li, Y., & Zhu, F. (2012). Effect of Isothermal Bainite Treatment on Microstructure and Mechanical Properties of Low‐Carbon TRIP Seamless Steel Tube. Steel research international, 83(7), 645-652. DOI: https://doi.org/10.1002/srin.201200012 (in English)


GOST Style Citations


  1. Богачев И. Н., Минц Р. И. Кавитационное разрушение железоуглеродистых сплавов. Москва : Машгиз, 1959. 110 с.
  2. Гольдштейн М. И., Грачев С. В., Векслер Ю. Г. Специальные стали. Москва : МИСИС, 1999. 408 с.
  3. Курдюмов Г. В., Утевский Л. М., Энтин Р. И. Превращения в железе и стали. Москва : Наука, 1977. 238 с.
  4. Малинов Л. С., Малинов В. Л. Повышение износостойкости сталей и чугунов за счет получения в их структуре метастабильного аустенита и реализации эффекта самозакалки при нагружении. Металл и литье Украины. 2001. № 1–2. С. 8–12.
  5. Малинов Л. С., Малинов В. Л. Экономнолегированные сплавы с мартенситными превращениями и упрочняющие технологии : монография. Харьков : ННЦ ХФТИ, 2007. 346 с.
  6. Чейлях А. П. Экономнолегированные метастабильные сплавы и упрочняющие технологии : монография. Мариуполь : ПГТУ, 2009. 483 с.
  7. Bhadeshia H. K. D. H., Edmonds D. V. The bainite transformation in a silicon steel. Metall Trans A. 1979. Vol. 10. Iss. 7. A. P. 895–907. DOI: https://doi.org/10.1007/BF02658309
  8. Bhadeshia H. K. D. H. TRIP-assisted steels? ISIJ international. 2002. Vol. 42. Iss. 9. P. 1059–1060. DOI: https://doi.org/10.2355/isijinternational.42.1059
  9. Bhattacharyya T., Singh S. B., Das S., Haldar A., Bhattacharjee D. Development and characterisation of C–Mn–Al–Si–Nb TRIP aided steel. Materials Science and Engineering : A. 2011. Vol. 528. Iss. 6. P. 2394–2400. DOI: https://doi.org/10.1016/j.msea.2010.11.054
  10. Bleck W., Guo X., Ma Y. The TRIP effect and its application in cold formable sheet steels. Steel research international. 2017. Vol. 88. Iss. 10. P. 1–10. DOI: https://doi.org/10.1002/srin.201700218
  11. Caballero F. G., Miller M. K., Babu S. S., Garcia-Mateo C. Atomic scale observations of bainite transformation in a high carbon high silicon steel. Acta Materialia. 2007. Vol. 55. Iss. 1. P. 381–390. DOI: https://doi.org/10.1016/j.actamat.2006.08.033
  12. Chatterjee S., Murugananth M., Bhadeshia H. K. D. H. δTRIP steel. Materials Science and Technology. 2007. Vol. 23. Iss. 7. P. 819–827. DOI: https://doi.org/10.1179/174328407X179746
  13. De Cooman B. C. Structure–properties relationship in TRIP steels containing carbide-free bainite. Current Opinion in Solid State and Materials Science. 2004. Vol. 8. Iss. 3–4. P. 285–303. DOI: https://doi.org/10.1016/j.cossms.2004.10.002
  14. Efremenko V. G., Zurnadzhi V. I., Chabak Y. G., Tsvetkova O. V., Dzherenova A. V. Application of the Q‑n‑P-Treatment for Increasing the Wear Resistance of Low-Alloy Steel with 0.75% C. Material Science. 2017. Vol. 53. Iss. 1. P. 67–75. DOI: https://doi.org/10.1007/s11003-017-0045-3
  15. Fonstein N. Advanced high strength sheet steels : physical metallurgy, design, processing, and properties. Berlin : Springer, 2015. 396 p. DOI: https://doi.org/10.1007/978-3-319-19165-2
  16. Garcia-Mateo C., Caballero F. G., Bhadeshia H. K. D. H. Acceleration of Low-temperature Bainite. ISIJ International. 2003. Vol. 43. Iss. 11. P. 1821–1825. DOI: https://doi.org/10.2355/isijinternational.43.1821
  17. Garcia-Mateo C., Caballero F. G., Sourmail T., Kuntz M., Cornide J., Smanio V., Elvira R. Tensile behaviour of a nanocrystalline bainitic steel containing 3wt% silicon. Materials Science and Engineering : A. 2012. Vol. 549. P. 185–192. DOI: https://doi.org/10.1016/j.msea.2012.04.031
  18. Hashimoto S., Ikeda S., Sugimoto K. I., Miyake S. Effects of Nb and Mo Addition to 0.2%C-1.5%Si-1.5%Mn Steel on Mechanical Properties of Hot Rolled TRIP-aided Steel Sheets. ISIJ International. 2004. Vol. 44. Iss. 9. P. 1590–1598. DOI: https://doi.org/10.2355/isijinternational.44.1590
  19. Jacques P., Delannay F., Cornet X., Harlet P., Ladriere J. Enhancement of the mechanical properties of a low-carbon, low-silicon steel by formation of a multiphased microstructure containing retained austenite. Metallurgical and Materials Transactions A. 1998. Vol. 29. Iss. 9. P. 2383–2393. DOI: https://doi.org/10.1007/s11661-998-0114-1
  20. Jacques P. J., Girault E., Mertens A., Verlinden B., Humbeeck J. V., Delannay F. The developments of cold rolled TRIP-assisted multiphase steels Al-alloyed TRIP-assisted multi-phase steels. ISIJ International. 2001. Vol. 41. Iss. 9. P. 1068–1074. DOI: https://doi.org/10.2355/isijinternational.41.1068
  21. Jacques P. J. Transformation-induced plasticity for high strength formable steels. Current Opinion in Solid State and Materials Science. 2004. Vol. 8. Iss. 3–4. P. 259–265. DOI: https://doi.org/10.1016/j.cossms.2004.09.006
  22. Kim S. J., Lee C. G., Choi I., Lee S. Effects of heat treatment and alloying elements on the microstructure and mechanical properties of 0.15 wt pct C transformation-induced plasticity-aided cold rolled steel sheet. Metallurgical and Materials Transactions A. 2001. Vol. 32 Iss. 3. P. 505–514. DOI: https://doi.org/10.1007/s11661-001-0067-0
  23. Koval’ A. D., Efremenko V. G., Brykov M. N., Andrushchenko M. I., Kulikovskii R. A., Efremenko A. V. Principles for developing grinding media with increased wear resistance. Part 1. Abrasive wear resistance of iron-based alloys. Journal of Friction and Wear. 2012. Vol. 33. Iss. 1. P. 39–46. DOI: https://doi.org/10.3103/S1068366612010072
  24. Kučerová L., Jirkova H., Mašek B. The effect of alloying on mechanical properties of advanced high strength steels. Archives of Metallurgy and Materials. 2014. Vol. 59. Iss. 3. P. 1189–1192. DOI: https://doi.org/10.2478/amm-2014-0206
  25. Lee K. Y. Tensile properties of different chemical compositions for TRIP-assisted multiphase steel for automobile structures. International Journal of Automotive Technology. 2008. Vol. 9. Iss. 1. P. 87–93. DOI: https://doi.org/10.1007/s12239-008-0011-z
  26. Mahieu J., Claessens S., De Cooman B. C. Galvanizability of highstrength steels for automotive applications. Metallurgical and Materials Transactions A. 2001. Vol. 32. Iss. 11. P. 2905–2907. DOI: https://doi.org/10.1007/s11661-001-1042-5
  27. Mahieu J., De Cooman B. C., Maki J. Phase transformation and mechanical properties of Si-free CMnAl transformation-induced plasticity-aided steel. Metallurgical and Materials Transactions A. 2002. Vol. 33. Iss. 8. P. 2537–2580. DOI: https://doi.org/10.1007/s11661-002-0378-9
  28. Maki J., Mahieu J., De Cooman B. C., Claessens S. Galvanisability of silicon free CMnAl TRIP steels. Materials science and technology. 2003. Vol. 19. Iss. 1. P. 125–131. DOI: https://doi.org/10.1179/026708303225009300
  29. Matsumura O., Sakuma Y., Takechi H. Trip and its kinetic aspects in austempered 0.4 C-1.5 Si-0.8 Mn steel. Scripta Metallurgica. 1987. Vol. 21. Iss. 10. P. 1301–1306.DOI: https://doi.org/10.1016/0036-9748(87)90103-7
  30. Mintz B. Hot dip galvanising of transformation induced plasticity and other intercritically annealed steels.
    International Materials Reviews. 2001. Vol. 46. Iss. 4. P. 169–197. DOI: https://doi.org/10.1179/095066001771048754
  31. Raabe D., Ponge D., Dmitrieva O., Sander B. Designing ultrahigh strength steels with good ductility by combining transformation induced plasticity and martensite aging. Advanced Engineering Materials. 2009. Vol. 11. Iss. 7. P. 547–555. DOI: https://doi.org/10.1002/adem.200900061
  32. Raabe D., Ponge D., Dmitrieva O., Sander B. Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility. Scripta Materialia. 2009. Vol. 60. Iss. 12. P. 1141–1144. DOI: https://doi.org/10.1016/j.scriptamat.2009.02.062
  33. Sugimoto K. I., Usui N., Kobayashi M., Hashimoto S. I.  Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels. ISIJ International. 1992. Vol. 32. Iss. 12. P. 1311–1318. DOI: https://doi.org/10.2355/isijinternational.32.1311
  34. Xu D., Li J., Meng Q., Liu Y., Li P. Effect of heating rate on microstructure and mechanical properties of TRIP-aided multiphase steel. Journal of Alloys and Compounds. 2014. Vol. 614. P. 94–101. DOI: https://doi.org/10.1016/j.jallcom.2014.06.075
  35. Yi H. L., Chen P., Hou Z. Y., Hong N., Cai H. L., Xu Y. B., Wu D., Wang G. D. A novel design: partitioning achieved by quenching and tempering (Q–T&P) in an aluminium-added low-density steel. Scripta Materialia. 2013. Vol. 68. Iss. 6. P. 370–374. DOI: https://doi.org/10.1016/j.scriptamat.2012.10.018
  36. Yi H. L., Ghosh S. K., Liu W. J., Lee K. Y., Bhadeshia H. K. D. H. Non-equilibrium solidification and ferrite in δ-TRIP steel. Materials Science and Technology. 2010. Vol. 26. Iss. 7. P. 817–823. DOI: https://doi.org/10.1179/174328409X428918
  37. Yi H. L., Lee K. Y., Bhadeshia H. K. D. H. Extraordinary ductility in Al-bearing δ-TRIP steel. Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences. 2011. Vol. 467. Iss. 2125. P. 234–243. DOI: https://doi.org/10.1098/rspa.2010.0127
  38. Yi H. L., Lee K. Y., Bhadeshia H. K. D. H. Stabilisation of ferrite in hot rolled δ-TRIP steel. Materials Science and Technology. 2011. Vol. 27. Iss. 2. P. 525–529. DOI: https://doi.org/10.1179/026708309X12506934374001
  39. Zhang Z., Manabe K., Li Y., Zhu F. X. Effect of isothermal bainite treatment on microstructure and mechanical properties of low-carbon TRIP seamless steel tube. Steel Research International. 2012. Vol. 83. Iss. 7. P. 645–652. DOI: https://doi.org/10.1002/srin.201200012




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)