DOI: https://doi.org/10.15802/stp2020/213180

ANALYSIS OF RAIL-WHEEL INTERACTION IN CURVES WITH SMALL RADII

R. Csépke

Abstract


Purpose. The authors goal is to point out that the new geometric design of the curves of tramways is recommended, furthermore the introduction of a new parameter too. This new parameter is the Creepage Index (CI), which takes into consideration the values of wheel creep from the optimal rolling radii difference on every wheelset in the bogie. Methodology. The several types of railprofiles and railway wheel tread profile geometres have been analised with a special softver and compared with standards, TSIs and BOStrab. Findings. The result of the analisys is that the mechanical conformity of rail/wheel interaction (running characteristic) in tramway tracks are unfavourable and new regulations are necessary to reduce the rail/wheel wear and corrugation especially in curves with small radii. Originality. In the EU the Technical Specifications for Interoperability (TSI) are in force, which regulate the parameters of running behaviour for the international and national public railways. However, the regulation does not apply to domestic tramways. In the course of the analysis, the author propose to introduce a system of regulation, which based on the mechanical suitability of the rail/wheel interaction. This is especially justified, because for example the regulation of German light rails (BOStrab) only requires the geometric dimensions of the wheel and the groove of the rail and their limits. Practical value. The author developed new geometric design and limit systems of narrow curves and straight tracks and a new test parameter, which shows degree of coherence for running characteristic of the given curve and vehicle, from the aspect of infrastructure, in case of all wheelsets of bogie. This CI (Creepage Index) parameter takes into account all wheel creep values resulting from the variations (+, –) of the optimum rolling radius difference. This results the tightening of bogie design principles and for running characteristic reasons, it requires the continous flange running of the outer wheel in narrow curves.


Keywords


rail/wheel interaction; curves with small radii; new regulation; tramway track

Full Text:

PDF HTML

References


Brandau, J. (1999). Einsatz unsymmetrischer Schienenkopfprofile im Nahverkehr. Hannover: Universität Hannover, Diss., (pp. 35-41). (in German)

BS EN 14363:2016+A1:2018. Railway applications. Testing and Simulation for the acceptance of running characteristics of railway vehicles. Running Behaviour and stationary tests. Retrieved from https://cutt.ly/LfSva6S (in English)

BS EN 15302:2008+A1:2010. Railway applications. Method for determining the equivalent conicity. Retrieved from https://cutt.ly/AfSvRM2 (in English)

Csépke, R. (2016). Wheel-Rail Interface in narrow curves. Proceedings of the 10th International Conference on Railway Bogies and Running Gears-Department of Rolling Stock of the Scientific Society of Mechanical Engineers: Conference Paper (pp. 297-305). Budapest, Hungary. (in English)

Csépke, R. (2016). Vasúti sín-kerék kapcsolat elemzése a kis sugarú ívekben. Sínek Világa, 58(2), 24-28. (in Hungarian)

Fischer, Sz. (2009). A kerék-sín érintkezés mechanikai problémái. Műszaki és informatikai rendszerek és modellek III, 51-68. (in Hungarian)

Fischer, Sz., & Horvát, F. (2009). Mérethatárok sebességfüggősége, XIII. Nemzetközi Építéstudományi Konferencia (ÉPKO) (pp. 137-143). Erdélyi Magyar Tudományos Társaság (EMT). Csíksomlyó, Románia. (in Hungarian)

Kaplan, A., Hasselman, T. K., & Short, S. A. (1970). Independently Rotating Wheels for High Speed Trains. SAE International, 2496-2497. DOI: https://doi.org/10.4271/700841 (in English)

Liu, B., Mei, T. X., & Bruni, S. (2016). Design and optimisation of wheel–rail profiles for adhesion improvement. Vehicle System Dynamics, 54(3), 429-444. DOI: https://doi.org/10.1080/00423114.2015.1137958 (in English)

Meyer, A. (2016). Wheel sets or independently rotating wheels-from theory to practice. Siemens AG, 1-12. (in English)

Rießberger, K. (2013). Das Zusammenwirken von Rad und Schiene. Handbuch Eisenbahninfrastruktur (pp. 1-38). DOI: https://doi.org/10.1007/978-3-642-30021-9_1 (in German)

Shevtsov, I. Y. (2008). Wheel/Rail Interface Optimisation. (PhD dissertation). Delft University of Technology (pp. 12-18). (in Dutch)

Stichel, S. (2013). Principles of wheel-rail interaction. WRI Principles course, 12-18. (in English)

Technische Regeln für die Spurführung von Schienenbahnen nach der Verordnung über den Bau und Betrieb der Strassenbahnen (BOStrab). (2006). (pp. 19-36). Retrieved from https://www.vdv.de/technische-regeln-spurfuehrung.pdfx (in German)

Track Design Handbook for Light Ral Transit. (2000). Transit Cooperative Research Program (pp. 7-10). (in English)

Wang, P., Ma, X., Wang, J., Xu, J., & Chen, R. (2017). Optimization of Rail Profiles to Improve Vehicle Running Stability in Switch Panel of High-Speed Railway Turnouts. Mathematical Problems in Engineering, 2017, 1-13. DOI: https://doi.org/10.1155/2017/2856030 (in English)

Zobory, I., Gáti, B., Kádár, L., & Hadházi, D. (2012). Járművek és mobil gépek I: Egyetemi tananyag. Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar (pp. 48-54). (in Hungarian)

Zobory, I. (1997). Prediction of Wheel/Rail Profile Wear. Vehicle System Dynamics, 28, 221-259. DOI: https://doi.org/10.1080/00423119708969355 (in English)


GOST Style Citations


  1. Brandau J. Einsatz unsymmetrischer Schienenkopfprofile im Nahverkehr. Hannover : Universität Hannover, Diss. 1999. P. 35–41.
  2. BS EN 14363:2016+A1:2018. Railway applications. Testing and Simulation for the acceptance of running characteristics of railway vehicles. Running Behaviour and stationary tests. 202 p. URL: https://cutt.ly/LfSva6S (date of access 25.06.2020).
  3. BS EN 15302:2008+A1:2010. Railway applications. Method for determining the equivalent conicity. 128 p. URL: https://cutt.ly/AfSvRM2 (date of access 25.06.2020).
  4. Csépke R. Wheel-Rail Interface in narrow curves. Proceedings of the 10th International Conference on Railway Bogies and Running Gears ‒ Department of Rolling Stock of the Scientific Society of Mechanical Engineers : Conference Paper (Budapest, 12–15 sept. 2016). Budapest, 2016. P. 297–305.
  5. Csépke R. Vasúti sín-kerék kapcsolat elemzése a kis sugarú ívekben. Sínek Világa. 2016. Vol. 58, № 2. P. 24–28.
  6. Fischer Sz. A kerék-sín érintkezés mechanikai problémái. Műszaki és informatikai rendszerek és modellek III. 2009. P. 51–68.
  7. Fischer Sz., Horvát F. Mérethatárok sebességfüggősége, XIII. Nemzetközi Építéstudományi Konferencia (ÉPKO) (Csíksomlyó, 11–14 jún. 2009). Erdélyi Magyar Tudományos Társaság (EMT). Csíksomlyó, 2009. P. 137–143.
  8. Kaplan A., Hasselmann T., Short S. Independently Rotating Wheels for High Speed Trains. SAE International. 1970. P. 2496–2497. DOI: https://doi.org/10.4271/700841
  9. Liu B., Mei T. X., Bruni S. Design and optimisation of wheel – rail profiles for adhesion improvement. Vehicle System Dynamics. 2016. Vol. 54. Iss. 3. P. 429–444. DOI: https://doi.org/10.1080/00423114.2015.1137958
  10. Meyer A. Wheel sets or independently rotating wheels – from theory to practice. Siemens AG. 2016. P. 1–12.
  11. Rießberger K. Das Zusammenwirken von Rad und Schiene. Handbuch Eisenbahninfrastruktur. 2013. P. 1–38. DOI: https://doi.org/10.1007/978-3-642-30021-9_1
  12. Shevtsov I. Y. Wheel / Rail Interface Optimisation. PhD Dissertation. Delft University of Technology, 2008. P. 12–18.
  13. Stichel S. Principles of wheel-rail interaction. WRI Principles course. 2013. P. 18–28.
  14. Technische Regeln für die Spurführung von Schienenbahnen nach der Verordnung über den Bau und Betrieb der Strassenbahnen (BOStrab). 2006. P. 19–36. URL: https://www.vdv.de/technische-regeln-spurfuehrung.pdfx
  15. Track Design Handbook for Light Ral Transit. Transit Cooperative Research Program, 2000. P. 7–10.
  16. Wang P., Ma X., Wang J., Xu J., Chen R. Optimization of Rail Profiles to Improve Vehicle Running Stability in Switch Panel of High-Speed Railway Turnouts. Hindawi Mathematical Problems in Engineering. Vol. 2017. P. 1–13. DOI: https://doi.org/10.1155/2017/2856030
  17. Zobory I., Gáti B., Kádár L., Hadházi D. Járművek és mobil gépek I : Egyetemi tananyag. Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar, 2012. P. 48–54.
  18. Zobory I. Prediction of Wheel / Rail Profile Wear. Vehicle System Dynamics. 1997. Vol. 28. P. 221–259. DOI: https://doi.org/10.1080/00423119708969355




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)