DOI: https://doi.org/10.15802/stp2020/213381

FLAT CARS COUPLING DYNAMICS WHEN TRANSPORTING LONG CARGO

O. V. Shatunov, A. O. Shvets

Abstract


Purpose. In connection with the tendency to intensify the transportation process under conditions of increased axial loads and train speeds the article aims to investigate the dynamic loading of the coupling of two flat cars with a long load, as well as to determine the dynamic forces of interaction under the action of quasi-static longitudinal forces. Methodology. The research is based on the method of mathematical and computer modeling of dynamic loading of longitudinal-and-flexural vibrations of a 22 m long stack of cargo, located on the coupling of two flat cars of 13-4012 model. The kinetic and potential energies of the system are compiled taking into account the kinetic and potential energies of the load, which are calculated using the known fundamental functions. To determine the fundamental functions, the problem of flexural vibrations of a load as a beam on two elastic supports was solved. To determine the fundamental functions for longitudinal displacements, the differential equation of free longitudinal vibrations of a bar of constant cross section was used. Theoretical studies were carried out when moving of flat cars with typical bogies 18-100 at speeds in the range from 60 to 100 km/h on a straight section of the railway track. Findings. During the study it was taken into account the movement of flat car coupling along a sinusoidal irregularity with a length of 25 m and different depths under the action of longitudinal compressive or tensile forces, as well as during running out. In the course of theoretical studies and after the modeling, taking into account the oscillation processes of the flat car and long cargo, in the presence of quasi-static longitudinal forces, the dependences of the main dynamic indicators on the movement speed were obtained. Originality. To determine the dynamic loading of the flat car coupling, a mathematical model of longitudinal-and-flexural vibrations in the vertical plane of the cargo stack-platform car coupling system has been developed. The proposed mathematical model makes it possible to theoretically determine the dynamic parameters of the system and ensure the development of methods for transporting long cargo in accordance with the safety requirements of train traffic. Practical value. As a result of the theoretical studies, a relevant and practically important problem of determining the loading of flat car coupling during the transportation of long cargo was solved, which will allow developing technical conditions for the implementation of resource-saving technologies.


Keywords


flat car; long cargo; dynamic indicators; coupling of cars; longitudinal forces; movement speed

References


Anisimov, P. S. (2013). Model of spatial oscillations of a flat car with long goods. Mir transporta, 4, 6-13. (in Russian)

Blokhin, Ye. P., & Manashkin, L. A. (1982). Dinamika poyezda (nestatsionarnyye prodolnyye kolebaniya): monograph. Moscow: Transport. (in Russian)

Blokhin, Ye. P., Manashkin, L. A., Stambler, Ye. L., Masleeva, L. G., Mikhaylichenko, V. M., & Granovskaya, N. I. (1986). Raschety i ispytaniya tyazhelovesnykh poezdov. Moscow: Transport. (in Russian)

Danilenko, E. I. (2010). Zaliznychna koliia. (Vol. 2). Kyiv: Inpres. (in Ukrainian)

Danovich, V. D. (1982). Spatial Cars Oscillations in Inertia Track. (Dysertatsiia doktora tekhnichnykh nauk). Dnepropetrovsk Institute of Railway Transport Engineering, Dnеpropetrovsk. (in Russian)

Danovich, V. D., & Malysheva, A. A. (1998). Mathematical Model of Spatial Oscillations of the Coupling of Five Cars Moving Along a Rectilinear Section of the Track. In Transport. Stress loading and durability of a rolling stock, 62-69. Dnepropetrovsk. (in Russian)

Vahony vantazhni. Vymohy do mitsnosti ta dynamichnykh yakostei, 58 DSTU 33211:2017 (2017). (in Ukrainian)

Lazaryan, V. A., & Konashenko, S. I. (1974). Obobshchennye funktsii v zadachakh mekhaniki. Kiev: Naukova dumka. (in Russian)

Shatunov, A. V. (1992). Nagruzhennost stsepa iz dvukh platform pri resursosberegayushchem sposobe transportirovki dlinnomernykh gruzov. (Extended abstract of PhD dissertation). Dnepropetrovsk Institute of Railway Transport Engineering, Dnеpropetrovsk. (in Russian)

Shvets, A. O. (2018). Influence of the longitudinal and transverse displacement of the center of gravity of the load in gondola cars on their dynamic indicators. Science and Transport Progress, 5(77), 115-128. DOI: https://doi.org/10.15802/stp2018/146432 (in Ukrainian)

Blochinas, E., Dailydka, S., Lingaitis, L. P., & Ursuliak, L. (2015). Nestacionarieji ir kvazistatiniai geležinkelio traukinių judėjimo režimai. Vilnius : Technika. DOI: https://doi.org/10.3846/2321-m (in Lithuanian)

Kurhan, M., & Kurhan, D. (2019). Providing the railway transit traffic Ukraine–European Union. Pollack Periodica, 14(2), 27-38. DOI: https://doi.org/10.1556/606.2019.14.2.3 (in English)

McKinnon, A. C. (2016). Freight Transport Deceleration: Its Possible Contribution to the Decarbonisation of Logistics. Transport Reviews, 36(4), 418-436. DOI: https://doi.org/10.1080/01441647.2015.1137992 (in English)

Shatunov, O. V., & Shvets, A. О. (2019). Study of dynamic indicators of flat wagon with load centre shift. Science and Transport Progress, 2(80), 127-143. DOI: https://doi.org/10.15802/stp2019/165160 (in English)

Shatunov, O. V., Shvets, A. O., Kirilchuk, O. A., & Shvets, A. O. (2019). Research of Wheel-Rail Wear Due to Non-Symmetrical Loading of a Flat Car. Science and Transport Progress, 4(82), 102–117. DOI: https://doi.org/10.15802/stp2019/177457


GOST Style Citations


  1. Анисимов П. С. Модель пространственных колебаний платформы с длинномерным грузом. Мир транспорта. 2013. № 4. С. 6–13.
  2. Блохин Е. П., Манашкин Л. А. Динамика поезда (нестационарные продольные колебания) : монография. Москва : Транспорт, 1982. 222 с.
  3. Блохин Е. П., Манашкин Л. А., Стамблер Е. Л., Маслеева Л. Г., Михайличенко В. М., Грановская Н. И. Расчеты и испытания тяжеловесных поездов. Москва : Транспорт, 1986. 263 с.
  4. Даніленко Е. І. Залізнична колія : підруч. для вищ. навч. закл. : у 2 т. Київ : Інпрес, 2010. Т. 2. 456 с.
  5. Данович В. Д. Пространственные колебания вагонов на инерционном основании : дис. … д-ра техн. наук. Днепропетр. ин-т инж. ж.-д. трансп. Днепропетровск, 1981. 465 с.
  6. Данович В. Д., Малышева А. А. Математическая модель пространственных колебаний сцепа пяти вагонов, движущихся по прямолинейному участку пути. Транспорт. Нагруженность и прочность подвижного состава : сб. науч. тр. Днепропетр. гос. техн. ун-т ж.-д. трансп. Днепропетровск, 1998. С. 62–69.
  7. ДСТУ ГОСТ 33211:2017. Вагони вантажні. Вимоги до міцності та динамічних якостей
    (ГОСТ 33211-2014, ID
    Т). [Чинний від 2017-07-01]. Київ : УкрНДНЦ, 2017. 58 с.
  8. Лазарян В. А., Конашенко С. И. Обобщённые функции в задачах механики. Киев : Наукова думка, 1974. 194 с.
  9. Шатунов А. В. Нагруженность сцепа из двух платформ при ресурсосберегающем способе транспортировки длинномерных грузов : автореф. дис. … канд. техн. наук. Днепропетр. ин-т инж. ж.-д. трансп. Днепропетровск, 1992. 17 с.
  10. Швець А. О. Вплив поздовжнього та поперечного зміщення центру ваги вантажу в піввагонах на їх динамічні показники. Наука та прогрес транспорту. 2018. № 5 (77). С. 115–128.
    DOI: https://doi.org/10.15802/stp2018/146432
  11. Blochinas E., Dailydka S., Lingaitis L., Ursuliak L. Nestacionarieji ir kvazistatiniai geležinkelio traukinių judčjimo režimai. Vilnius : Technika, 2016. 168 p. DOI: https://doi.org/10.3846/2321-m
  12. Kurhan M., Kurhan D. Providing the Railway Transit Traffic Ukraine–European Union. Pollack Periodica. Vol. 14. Iss. 2. P. 27–38. DOI: https://doi.org/10.1556/606.2019.14.2.3
  13. McKinnon A. C. Freight Transport Deceleration: Its Possible Contribution to the Decarbonisation of Logistics. Transport Reviews. 2016. Vol. 36. Iss. 4. P. 418–436. DOI: https://doi.org/10.1080/01441647.2015.1137992
  14. Shatunov O. V., Shvets A. O. Study of dynamic indicators of flat wagon with load centre shift. Наука та прогрес транспорту. 2019. № 2 (80). Р. 127–143. DOI: https://doi.org/10.15802/stp2019/165160
  15. Shatunov O. V., Shvets A. O., Kirilchuk O. A., Shvets A. O. Research of Wheel-Rail Wear Due to Non-Symmetrical Loading of a Flat Car. Наука та прогрес транспорту. 2019. № 4 (82). Р. 102–117. DOI: https://doi.org/10.15802/stp2019/177457




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)