DOI: https://doi.org/10.15802/stp2020/218310

SIMULATION OF WASTE WATER TREATMENT BASED ON CFD MODEL: EXPRESS CALCULATION

V. А. Kozachyna, O. V. Hromova, O. Y. Hunko, L. H. Tatarko

Abstract


Purpose. Development of CFD model to evaluate the efficiency of wastewater treatment in a horizontal settler. The CFD model can be used to calculate flow hydrodynamics and mass transfer in settlers with complex geometric shape in the area of wastewater flow. Methodology. For numerical simulation of the process of wastewater movement in a horizontal settler, two mathematical models are used. The first model is based on the motion equations of a viscous incompressible fluid – the Navier-Stokes equations. The Navier-Stokes equations are written in the variables «vorticity - flow function». A two-dimensional mass transfer equation is used to calculate the concentration of a pollutant in a horizontal settler. To numerically integrate the two-dimensional mass transfer equation, a finite-difference splitting scheme is used. The splitting of the modeling equation of mass transfer is carried out so that at each fractional step to determine the unknown value of the pollutant concentration by an explicit formula. For numerical integration of the vortex transfer equation and the equation for the flow function (the Navier-Stokes system of equations), finite-difference splitting schemes are used. Findings. Based on the developed CFD model, a complex of computer programs has been developed, which makes it possible to determine the efficiency of water treatment in a horizontal settler with additional elements. The results of a computational experiment to assess the efficiency of water treatment in a horizontal settler with additional elements in the form of plates are presented. Originality. An efficient CFD model has been created, which allows to quickly evaluate the efficiency of wastewater treatment in a horizontal settler with additional elements. The developed CFD model takes into account the geometric shape of the facility and the most significant physical factors, that influence the efficiency of the waste water treatment in horizontal settler: non-uniform flow velocity, diffusion, different position of inlet and outlet openings. Practical value. The developed CFD model belongs to the class of «diagnostic models» and can be used to assess the efficiency of treatment facilities at the stage of their preliminary design.


Keywords


waste waters treatment; numerical simulation; horizontal settler

References


Biliaiev, N. N., & Kozachina, V. A. (2015). Modelirovaniye massoperenosa v gorizontalnykh otstoynikakh: monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)

Biliaiev, N. N., & Nagornaya, E. K. (2012). Matematicheskoye modelirovaniye massoperenosa v otstoynikakh sistem vodootvedeniya: monografiya. Dnepropetrovsk: Novaya ideologiya. (in Russian)

Kolobanov, S. K., Yershov, A. V., & Kigel, M. Ye. (1997). Proektirovanie ochistnykh sooruzheniy kanalizatsii. Kiev: Budіvelnik. (in Russian)

Oleynik, Ya. A., Kalugin, Yu. I., Stepovaya, N. G., & Zyablikov, S. M. (2004). Teoreticheskiy analiz protsessov osazhdeniya v sistemakh biologicheskoy ochistki stochnykh vod. Prikladna gіdromekhanіka, 6(78(4)), 62-67. (in Russian)

Oleynik, A. Y., & Airapetyan, T. S. (2015). The modeling of the clearance of waste waters from organic pollutions in bioreactors-aerotanks with suspended (free flow) and fixed biocenoses. Reports of the National Academy of Sciences of Ukraine, 5, 55-60. DOI: https://doi.org/10.15407/dopovidi2015.05.055 (in Ukrainian)

Biliaiev, M. M., & Kozachyna, V. A. (2015). Numerical determination of horizontal settlers performance. Science and Transport Progress, 4(58), 34-43. DOI: https://doi.org/10.15802/STP2015/49201 (in English)

Hadad, H., & Ghaderi, J. (2015). Numerical Simulation of the Flow Pattern in the Aeration Tank of Sewage Treatment System by the Activated Sludge Process Using Fluent Program. Biological Forum-An International Journal, 7(1), 382-393. (in English)

Luna, F. D. ., Silva, A. G., Fukumasu, N. K., Bazan, O., Gouveia, J. H. A., Moraes, D., … & Vianna, A. S. (2019). Fluid dynamics in continuous settler. Chemical Engineering Journal, 362, 712-720. DOI: https://doi.org/10.1016/j.cej.2019.01.088 (in English)

Misra, A., de Souza, L. G. M., Illner, M., Hohl, L., Kraume, M., Repke, J.-U., & Thévenin, D. (2017). Simulating separation of a multiphase liquid-liquid system in a horizontal settler by CFD. Chemical Engineering Science, 167, 242-250. DOI: https://doi.org/10.1016/j.ces.2017.03.062 (in English)

Panda, S. K., Singh, K. K., Shenoy, K. T., & Buwa, V. V. (2017). Numerical simulations of liquid-liquid flow in a continuous gravity settler using OpenFOAM and experimental verification. Chemical Engineering Journal, 310, 120-133. DOI: https://doi.org/10.1016/j.cej.2016.10.102 (in English)

Thaker, A. H., Darekar, M., Singh, K. K., & Buwa, V. V. (2018). Experimental investigations of liquid–liquid disengagement in a continuous gravity settler. Chemical Engineering Research and Design, 139, 174-187. DOI: https://doi.org/10.1016/j.cherd.2018.09.031 (in English)

Zhang, H., Zheng, S., Zhang, X., Duan, S., & Li, S. (2020). Optimizing the inclined plate settler for a high-rate microaerobic activated sludge process for domestic wastewater treatment: A theoretical model and experimental validation. International Biodeterioration & Biodegradation, 154, 105060. DOI: https://doi.org/10.1016/j.ibiod.2020.105060 (in English)


GOST Style Citations


  1. Беляев Н. Н., Козачина В. А. Математическое моделирование массопереноса в горизонтальных отстойниках : монография. Днепропетровск : Акцент ПП, 2015. 115 с.
  2. Беляев Н. Н., Нагорная Е. К. Математическое моделирование массопереноса в отстойниках систем водоотведения : монография. Днепропетровск : Новая идеология, 2012. 112 с.
  3. Колобанов С. К., Ершов А. В., Кигель М. Е. Проектирование очистных сооружений канализации. Киев : Будівельник, 1997. 224 с.
  4. Олейник Я. А., Калугин Ю. И., Степовая Н. Г., Зябликов С. М. Теоретический анализ процессов осаждения в системах биологической очистки сточных вод. Прикладна гідромеханіка. 2004. Т. 6 (78), № 4. С. 62–67.
  5. Олійник О. Я, Айрапетян Т. С. Моделювання очисних стічних вод від органічних забруднень в біореакторах-аеротенках зі зваженим (вільно плаваючим) і закріпленим біоценозом. Доповідь НАН України. 2015. № 5. С. 55–60. DOI: https://doi.org/10.15407/dopovidi2015.05.055
  6. Biliaiev M. M., Kozachyna V. A. Numerical determination of horizontal settlers performance. Наука та прогрес транспорту. 2015. № 4 (58). P. 34–43. DOI: https://doi.org/10.15802/STP2015/49201
  7. Hadad H., Ghaderi J. Numerical Simulation of the Flow Pattern in the Aeration Tank of Sewage Treatment System by the Activated Sludge Process Using Fluent Program. Biological Forum – An International Journal. 2015. Vol. 7 (1). P. 382–393.
  8. Luna F. D., Silva A. G., Fukumasu N. K., Bazan O., Gouveia J. H. A., Moraes D., … Vianna A. S. Fluid dynamics in continuous settler. Chemical Engineering Journal. 2019. Vol. 362. P. 712–720. DOI: https://doi.org/10.1016/j.cej.2019.01.088
  9. Misra A., de Souza L. G. M., Illner M., Hohl L., Kraume M., Repke J.-U., Thévenin D. Simulating separation of a multiphase liquid-liquid system in a horizontal settler by CFD. Chemical Engineering Science. 2017. Vol. 167. P. 242–250. DOI: https://doi.org/10.1016/j.ces.2017.03.062
  10. Panda S. K., Singh K. K., Shenoy K. T., Buwa V. V. Numerical simulations of liquid-liquid flow in a continuous gravity settler using OpenFOAM and experimental verification. Chemical Engineering Journal. 2017. Vol. 310. P. 120–133. DOI: https://doi.org/10.1016/j.cej.2016.10.102
  11. Thaker A. H., Darekar M., Singh K. K., Buwa V. V. Experimental investigations of liquid–liquid disengagement in a continuous gravity settler. Chemical Engineering Research and Design. 2018. Vol. 139. P. 174–187. DOI: https://doi.org/10.1016/j.cherd.2018.09.031
  12. Zhang H., Zheng S., Zhang X., Duan S., Li S. Optimizing the inclined plate settler for a high-rate microaerobic activated sludge process for domestic wastewater treatment : A theoretical model and experimental validation. International Biodeterioration & Biodegradation. 2020. Vol. 154. P. 105060. DOI: https://doi.org/10.1016/j.ibiod.2020.105060




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)