DOI: https://doi.org/10.15802/stp2020/218603

IMPROVEMENT OF THE METHODOLOGY FOR RATIONAL PARAMETERS DETERMINATION OF THE CAPACITIVE ENERGY STORAGE FOR THE METRO TRAIN

A. O. Sulym, P. O. Khozia

Abstract


Purpose. The purpose of the work is to determine the rational capacity and energy consumption of the onboard capacitive energy storages using a complex approach for estimating the parameters, which is based on the methods of theoretical research. Methodology. The article performs a comparative analysis of existing methodologies and approaches for determination of the onboard capacitive storages parameters for subway trains with recovery systems, formulates the advantages and disadvantages of each of them. It is determined that among the existing methodologies it is most reasonable to use a complex approach, the aim of which is to determine the rational capacity and energy consumption according to two parameters of the energy storage system – weight and payback period. A procedure for determining the rational parameters of the onboard capacitive energy storage using theoretical research methods is proposed: theoretical basis of electric traction, mathematical modeling of dynamic motion and energy processes, mathematical statistics, technical-economic and comparative analysis. Findings. According to the results of the complex theoretical researches, the economic expediency of implementation of onboard capacitive energy storages on the subway train is confirmed. The energy storage system with rational parameters of the onboard capacitive energy storage for established operating conditions in the Municipal Enterprise «Kyiv Metro» and selected experimental train of the subway is determined. The amount of saved electricity due to the implementation of the energy storage system with rational parameters is estimated. Originality. The methodology for determining the rational parameters of the onboard capacitive energy storage in terms of replacing the use of experimental research data with theoretical research, the purpose of which is to model the movement of subway trains with recovery systems using software to reduce financial costs, research time and increase their accuracy. The research on determination of quantitative indicators of recovery electricity for the analysis of energy saving reserves was further developed in the subway. Practical value. The results of theoretical research can be the basis for the creation of full-scale samples of subway trains with onboard capacitive energy storages. The researches will create recommendations for the design of innovative energy-saving subway trains with improved technical and economic characteristics that can increase the efficiency of the transportation process in the subway.


Keywords


on-board capacitive energy storage; condenser module; subway train; energy storage system; recovery system

References


Bayryeva, L. S., & Prokopovich, A. V. (2004). Teoriya elektricheskoy tyagi. Metodicheskoe posobie. Moscow: izdatelstvo MEI. (in Russian)

Vasilyev, V. А. (2012). Povyshenie energeticheskoy effektivnosti elektropoezdov postoyannogo toka. (Extended abstract of PhD dissertation). Emperor Alexander i St. Petersburg State Transport University, St. Petersburg, Russia. (in Russian)

Kostin, N. A., & Nikitenko, A. V. (2014). Autonomy regenerative braking-the basis for reliable energy-efficient heat recovery in electric rolling stock DC. Railway Transport of Ukraine, 3, 15-23. (in Russian)

Mukha, A. M., Kostin, N. O., Kurylenko, O. Y., & Tsyplia, H. V. (2017). Enhancing the operational efficiency of direct current drive based on use of supercondenser power storage units. Science and Transport Progress, 5(71), 48-60. DOI: https://doi.org/10.15802/stp2017/114624 (in Ukrainian)

Myatezh, A. V., & Yaroslavtsev, M. V. (2013). Opredelenie energoemkosti bortovogo bufernogo kondensatornogo nakopitelya energii dlya gorodskogo elektricheskogo transporta. Transport of Russian Federation, 4(47), 62-65. (in Russian)

Rozenfeld, V. Ye., Isaev, I. P., Sidorov, N. N., & Ozerov, M. I. (1995). Teoriya elektricheskoy tyagi. (Isaev, I. P. (Ed.)). Moscow: Transport. (in Russian)

Rybalko, A. Ya., & Dybrin, S. V. (2008). Vybor emkosti nakopitelya energii dlya obespecheniya snizheniya maksi-muma potreblyaemoy moshchnosti. Mining informational and analytical bulletin, 8, 356-361. (in Russian)

Ryabov, Ye. S. (2015). Opredelenie parametrov nakopitelya energii dlya elektropodvizhnogo sostava s asinkhronnym tyagovym privodom v rezhime ogranicheniya toka tyagovoy seti. Bulletin NTU KhPI. Series: Mathematical modeling in engineering and technologies, 6(1115), 132-137. (in Russian)

Vaghony metropolitenu. Zaghaljni tekhnichni vymoghy, 29 SOU MPP 45.060-253:2008 (2010). (in Ukrainian)

Sulim, A. A., & Lomonos, A. I. (2013). Raschet energii rekuperatsii pri ustanovke nakopitelya na elektropoezde metropolitena. Transport Systems and Technologies: Collection of scientific works of the State University of Infrastructure and Technologies, 23, 22-29. (in Russian)

Sulym, A., Siora, O., Khozia, P., & Melnyk, O. (2019). Proghramne zabezpechennja dlja modeljuvannja rukhu pojizda metropolitenu. Collection of Scientific Works of the State University of Infrastructure and Technologies Series “Transport Systems and Technologies”, 34, 182-198. DOI: https://doi.org/10.32703/2617-9040-2019-34-2-2 (in Ukrainian)

Shevlyugin, M. V., & Zheltov, K. S. (2008). On reduction of electric power consumption in moscow underground by application of capacitive energy storage devices. Science and Technology of Transport, 1, 15-20. (in Russian)

13. Shchurov, N. I., Shcheglov, K. V., & Shtang, A. A. (2008). The application of devices storage energy in system in the systems of electric traction. Transaction of Scientific Papers of the Novosibirsk State Technical University, 1(51), 99-104. (in Russian)

Fomin, O., Sulym, A., Kulbovskyi, I., Khozia, P., & Ishchenko, V. (2018). Determining rational parameters of the capacitive energy storage system for the underground railway rolling stock. Eastern-European Journal of Enterprise Technologies, 2(1(92)), 63-71. DOI: https://doi.org/10.15587/1729-4061.2018.126080 (in English)

Ghaviha, N., Campillo, J., Bohlin, M., & Dahlquist, E. (2017). Review of Application of Energy Storage Devices in Railway Transportation. Energy Procedia, 105, 4561-4568. DOI: https://doi.org/10.1016/j.egypro.2017.03.980 (in English)

Iannuzzi, D., & Tricoli, P. (2010). Metro trains equipped onboard with supercapacitors: A control technique for energy saving. SPEEDAM 2010, 750-756. DOI: https://doi.org/10.1109/SPEEDAM.2010.5542102 (in English)

Khodaparastan, M., Mohamed, A. A., & Brandauer, W. (2019). Recuperation of Regenerative Braking Energy in Electric Rail Transit Systems. IEEE Transactions on Intelligent Transportation Systems, 20(8), 2831-2847. DOI: https://doi.org/10.1109/TITS.2018.2886809 (in English)

Mensah-Darkwa, K., Zequine, C., Kahol, P., & Gupta, R. (2019). Supercapacitor Energy Storage Device Using Biowastes: A Sustainable Approach to Green Energy. Sustainability, 11(2), 1-22. DOI: https://doi.org/10.3390/su11020414 (in English)

Sulym, A., Fomin, O., Khozia, P., Palant, O., & Stamatin, V. (2019). Development of a comprehensive approach to determining the rational parameters of an onboard capacitive energy accumulator for a subway train. Eastern-European Journal of Enterprise Technologies, 6(3(102)), 28-38. DOI: https://doi.org/ 10.15587/1729-4061.2019.183304 (in English)

Sulym, A. O., Fomin, O. V., Khozia, P. O., & Mastepan, A. G. (2018). Theoretical and practical determination of parameters of on-board capacitive energy storage of the rolling stock. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 79-87. DOI: https://doi.org/10.29202/nvngu/2018-5/8 (in English)

Wieczorek, M., & Lewandowski, M. (2018). Zasobnik energii umożliwiający przejazd tramwaju przez skrzyżowanie bez użycia sieci trakcyjnej. TTS Technika Transportu szynowego, 25(10), 39-43. (in Polish)

Xia, H., Chen, H., Yang, Z., Lin, F., & Wang, B. (2015). Optimal Energy Management, Location and Size for Stationary Energy Storage System in a Metro Line Based on Genetic Algorithm. Energies, 8(10), 11618-11640. DOI: https://doi.org/10.3390/en81011618 (in English)


GOST Style Citations


  1. Байрыева Л. С., Прокопович А. В. Теория электрической тяги. Методическое пособие. Москва : Изд-во МЭИ, 2004. 40 с.
  2. Васильев В. А. Повышение энергетической эффективности электропоездов постоянного тока : автореф. дис. … канд. техн. наук. Петербургский гос. ун-т. путей сообщения. Санкт-Петербург, 2012. 16 с.
  3. Костин Н. А., Никитенко А. В. Автономность рекуперативного торможения – основа надежной энергоэффективной рекуперации на электроподвижном составе постоянного тока. Залізн. трансп. України. 2014. № 3. С. 15–23.
  4. Муха А. М., Костін М. О., Куриленко О. Я., Ципля Г. В. Підвищення ефективності роботи електроприводу постійного струму на основі використання суперконденсаторних накопичувачів електроенергії. Наука та прогрес транспорту. 2017. № 5 (71). С. 48–60. DOI: https://doi.org/10.15802/stp2017/114624
  5. Мятеж, А. В., Ярославцев М. В. Определение энергоемкости бортового буферного конденсаторного накопителя энергии для городского электрического транспорта. Транспорт Российской Федерации. 2013. № 4 (47). С. 62–65.
  6. Розенфельд В. Е., Исаев И. П., Сидоров Н. Н., Озеров М. И. Теория электрической тяги / под ред. И. П. Исаева. Москва : Транспорт, 1995. 294 с.
  7. Рыбалко А. Я., Дыбрин С. В. Выбор емкости накопителя энергии для обеспечения снижения максимума потребляемой мощности. Горный информационно-аналитический бюллетень. 2008. № 8. С. 356–361.
  8. Рябов Е. С. Определение параметров накопителя энергии для электроподвижного состава с асинхронным тяговым приводом в режиме ограничения тока тяговой сети. Вісник НТУ «ХПІ». Серія : Математичне моделювання в техніці та технологіях. 2015. № 6 (1115). С. 132–137.
  9. СОУ МПП 45.060-253:2008. Вагони метрополітену. Загальні технічні вимоги. [Чинний від 2010-01-01] Вид. офіц. Київ : Міністерство промислової політики України, 2008. 29 с.
  10. Сулим А. А., Ломонос А. И. Расчет энергии рекуперации при установке накопителя на электропоезде метрополитена. Збірник наукових праць ДЕТУТ : Серія «Транспортні системи і технології». 2013. Вип. 23. С. 22–29.
  11. Сулим А. О., Сіора О. С., Хозя П. О., Мельник О. О. Програмне забезпечення для моделювання руху поїзда метрополітену. Збірник наукових праць ДУІТ : Серія «Транспортні системи і технології». 2019. № 34. С. 182–198. DOI: https://doi.org/10.32703/2617-9040-2019-34-2-2
  12. Шевлюгин М. В., Желтов К. С. Снижение расхода электроэнергии на движение поездов в Московском метрополитене при использовании емкостных накопителей энергии. Наука и техника транспорта. 2008. № 1. С. 15–20.
  13. Щуров Н. И., Щеглов К. В., Штанг А. А. Применение накопителей энергии в системах электрической тяги. Сборник научных трудов НГТУ. 2008. № 1 (51). С. 99–104.
  14. Fomin O., Sulym A., Kulbovskiy I., Khozia P., Ishchenko V. Determining rational parameters of the capacitive energy storage system for the underground railway rolling stock. Eastern-European Journal of Enterprise Technologies. 2018. Vol. 2. Iss. 1 (92). P. 63–71.
    DOI: https://doi.org/10.15587/1729-4061.2018.126080
  15. Ghaviha N., Campillo J., Bohlin M., Dahlquist E. Review of application of energy storage devices in railway transportation. Energy Procedia. 2017. Vol. 105. P. 4561–4568. DOI: https://doi.org/10.1016/j.egypro.2017.03.980
  16. Iannuzzi D., Tricoli P. Metro trains equipped onboard with supercapacitors : a control technique for energy saving. SPEEDAM 2010. P. 750–756. DOI: https://doi.org/10.1109/SPEEDAM.2010.5542102
  17. Khodaparastan M., Mohamed A. A., Brandauer W. Recuperation of regenerative braking energy in electric rail transit systems. IEEE Transaction on Intelligent Transportation Systems. 2018. Vol. 20. Iss. 8. P. 831–2847.
    DOI: https://doi.org/10.1109/TITS.2018.2886809
  18. Mensah-Darkwa K., Zequine C., Kahol P., Gupta R. Supercapacitor Energy Storage Device Using Biowastes : A Sustainable Approach to Green Energy. Sustainability. 2019. Vol. 11. Iss. 2. P. 1–22. DOI: https://doi.org/10.3390/su11020414
  19. Sulym A., Fomin О., Khоzia P., Palant O., Stamatin V. Development of a comprehensive approach to determining the rational parameters of an onboard capacitive energy accumulator for a subway train. Eastern-European Journal of Enterprise Technologies. 2019. Vol. 6, № 3 (102). P. 28–38. DOI: https://doi.org/10.15587/1729-4061.2019.183304
  20. Sulym А., Fomin О., Khоzia P., Mastepan A. Theoretical and practical determination of parameters of on-board capacitive energy storage of the rolling stock. Науковий Вісник НГУ. 2018. № 5. P. 79–87. DOI: https://doi.org/10.29202/nvngu/2018-5/8
  21. Wieczorek M., Lewandowski M. Zasobnik energii umożliwiający przejazd tramwaju przez skrzyżowanie bez użycia sieci trakcyjnej. TTS Technika Transportu szynowego. 2018. Vol. 25, № 10. P. 39–43.
  22. Xia H., Chen H., Yang Z., Lin F., Wang B. Optimal energy management location and size for stationary energy storage system in a metro line based on genetic algorithm. Energies. 2015. Vol. 8. Iss. 10. P. 11618–11640. DOI: https://doi.org/10.3390/en81011618




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)