Investigation of curves set by cubic distribution of curvature

S. A. Ustenko, S. V. Didanov, O. YU. Agarkov

Abstract


Purpose. Further development of the geometric modeling of curvelinear contours of different objects based on the specified cubic curvature distribution and setpoints of curvature in the boundary points. Methodology. We investigate the flat section of the curvilinear contour generating under condition that cubic curvature distribution is set. Curve begins and ends at the given points, where angles of tangent slope and curvature are also determined. It was obtained the curvature equation of this curve, depending on the section length and coefficient c of cubic curvature distribution. The analysis of obtained equation was carried out. As well as, it was investigated the conditions, in which the inflection points of the curve are appearing. One should find such an interval of parameter change (depending on the input data and the section length), in order to place the inflection point of the curvature graph outside the curve section borders. It was determined the dependence of tangent slope of angle to the curve at its arbitrary point, as well as it was given the recommendations to solve a system of integral equations that allow finding the length of the curve section and the coefficient c of curvature cubic distribution. Findings. As the result of curves research, it is found that the criterion for their selection one can consider the absence of inflection points of the curvature on the observed section. Influence analysis of the parameter c on the graph of tangent slope angle to the curve showed that regardless of its value, it is provided the same rate of angle increase of tangent slope to the curve. Originality. It is improved the approach to geometric modeling of curves based on cubic curvature distribution with its given values at the boundary points by eliminating the inflection points from the observed section of curvilinear contours. Practical value. Curves obtained using the proposed method can be used for geometric modeling of curvilinear contours of objects in different industry branches.


Keywords


curve; cubic curvature distribution; geometric modeling; inflection points; angle of tangent slope; curvature of curvilinear contours

References


Aharkov O.Yu. Zastosuvannia formul Serre-Frene do modeliuvannia kryvykh, shcho prokhodiat cherez zadani tochky ploshchyny abo prostoru [Application of Serret-Freinet formulas to curves simulation that pass through the given points of the plane or space]. Pratsi Tavriiskoho derzhavnoho ahrotekhnolohichnoho universytetu «Prykladna heometriia ta inzhenerna hrafika» [Proc. of Tavria State Agrotechnological University «Applied Geometry and Engineering Graphics»]. Melitopol, 2013, vol. 57, issue 4, pp. 3-9.

Badaiev S.Yu., Borovik Ye.O. Kryvoliniinyi sehment na osnovi intehralnoi kryvoi [Curved segments based on the integral curve]. Prykladna heometriia ta inzhenerna hrafika [Applied geometry and Engineering Graphics]. Kyiv, KNUBA Publ., 2009, issue 81, pp. 213-217.

Baydabekov A.K. Geometricheskiy metod konstruirovaniya lopatki ventilyatora [Geometric method of fan blade engineering]. Prykladna heometriia ta inzhenerna hrafika [Applied geometry and Engineering Graphics]. Kyiv, KNUBA Publ., 2010, issue 83, pp. 93-97.

Vanin V.V., Virchenko H.A. Heometrychne modeliuvannia – odna z osnov avtomatyzovanoho proektuvannia obiektiv i protsesiv mashynobuduvannia [Geometric modeling is one of the computer-aided design objects foundations and process of engineering]. Pratsi Tavriiskoho derzhavnoho ahrotekhnolohichnoho universytetu «Prykladna heometriia ta inzhenerna hrafika» [Proc. of Tavria State Agrotechnological University «Applied Geometry and Engineering Graphics»]. Melitopol, 2009, vol. 43, issue 4, pp. 3-10.

Havrylenko Ye.A. Vyznachennia hranyts diapazoniv polozhennia dotychnykh do obvodu z monotonnoiu zminoiu kryvyny [Identification of the ranges boundaries of touch on circumference position with a monotonic change of curvature]. Pratsi Tavriiskoho derzhavnoho ahrotekhnolohichnoho universytetu «Prykladna heometriia ta inzhenerna hrafika» [Proc. of Tavria State Agrotechnological University «Applied Geometry and Engineering Graphics»]. Melitopol, 2005, vol. 29, issue 4, pp. 54-58.

Didanov S.V. Formy perekhidnykh kryvykh zaliznychnoho shliakhu [Forms of railways transitional curves]. Materialy druhoi Mizhnarodnoi naukovo-praktychnoi konferentsii studentiv, aspirantiv ta molodykh vchenykh «Prykladnna heometriia, dyzain ta obiekty intelektualnoi vlasnosti» [Proc. of the 2nd Int. Sci. and Practical Conf. of Students and Young Scientists «Applied geometry, design, and intellectual property»], 2013, issue 2, pp. 55-59.

Dovhaliuk V.B., Mileikovskyi V.O. Heometrychnyi analiz struktury strumyn, shcho nastylaiutsia na poverkhni riznoi kryvyny [Geometric analysis of currents structure that are planked on different surfaces curvature]. Prykladna heometriia ta inzhenerna hrafika [Applied geometry and Engineering Graphics]. Kyiv, KNUBA Publ., 2012, issue 89, pp. 156-165.

Kurhan M.B., Husak M.A., Khmelevska N.P. Perebudova kryvykh dlia vprovadzhennia shvydkisnoho rukhu pasazhyrskykh poizdiv [Reconstruction of curves for high-speed of passenger trains implementation]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2012, issue 40, pp. 90-97.

Mykhailenko V.Ye., Li V.H. Dyskretne modeliuvannia na bazi intehralnoi modeli kryvoi [Discrete simulation based on integral curve model]. Prykladna heometriia ta inzhenerna hrafika [Applied geometry and Engineering Graphics]. Kyiv, KNUBA Publ., 1999, issue 66, pp. 3-8.

Pustiulha S.I., Samostian V.R. Dyskretne modeliuvannia kryvykh za zadanymy funktsiiamy zminy kryvyny ta skrutu [Discrete simulation of curves on a given functions of curvature and torsion changes]. Suchasni problemy heometrychnoho modeliuvannia. Mizhvuzivskyi zbirnyk (za napriamkom «Inzhenerna mekhanika») [Contemporary problems in geometric modeling. Interuniversity collection (Engineering Mechanics)], 2008, issue 22, part 1, pp. 286-292.

Spirintsev D.V. Heometrychne modeliuvannia profiliu ploskykh pereriziv pera lopatky kompresora [Geometric modeling of flat sections profile of the compressor blade airfoil]. Heometrychne ta kompiuterne modeliuvannia [Geometric and Computational Modeling], Kharkiv, KhDUKhT Publ., 2009, issue 22, pp. 156–161.

Ustenko S.A. Modeliuvannia kryvoi iz zastosuvanniam kubichnoho zakonu rozpodilu yii kryvyny [Simulation of curvature using a cubic law of its curves distribution]. Visnyk Khersonskoho natsionalnoho tekhnichnoho universytetu [Bulletin of Kherson National Technical University], 2008, issue 2 (31), pp. 480-484.

Ustenko S.A. Normalizatsiia hrafikiv rozpodilu kryvyny [Normalization of curvature distribution graphs]. Pratsi Tavriiskoho derzhavnoho ahrotekhnolohichnoho universytetu «Prykladna heometriia ta inzhenerna hrafika» [Proc. of Tavria State Agrotechnological University «Applied Geometry and Engineering Graphics»]. Melitopol, 2013, vol. 56, issue 4, pp. 227-231.

Ustenko S.A., Didanov S.V. Metod pobudovy prostorovoi perekhidnoi kryvoi [Constructing method of spatial transition curve]. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu − Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2013, no. 44, pp. 124-128.

Ustenko S.A., Didanov S.V., Aharkov O.Yu. Heometrychne modeliuvannia kryvykh linii iz zadanoiu kryvynoiu v hranychnykh tochkakh [Geometric modeling of curves with a given curvature in boundary points]. Prykladna heometriia ta inzhenerna hrafika [Applied geometry and Engineering Graphics]. Kyiv, KNUBA Publ., 2011, issue 87, pp. 404-409.

Foks A., Pratt M. Vychislitelnaya geometriya. Primeneniye v proyektirovanii i na proizvodstve [Computational geometry. Application in designing and manufacturing]. Moscow Publ., 1982. 304 p.

Ebaid M.S.Y., Bhinder F.S., Khdairi G.H. A unified approach for designing a radial flow gas turbine. Transactions of the ASME, 2003, vol. 125, pp. 598-606.

Farin G. Curves and surfaces for computer-aided geometric design. Academic Press Inc Publ., 1997, 4-th edition. 447 p.

Lipicnik M. New form of road/railway transition curve. Journal of transportation engineering, 1998, November / December, pp. 546-556.

Tari E., Baykal O. A new transition curve with enhanced properties. Canadian journal of civil engineering, 2005, vol. 32, pp. 913-923.


GOST Style Citations


1. Агарков, О. Ю. Застосування формул Серре-Френе до моделювання кривих, що проходять через задані точки площини або простору / О. Ю. Агарков // Приклад. геометрія та інж. графіка : пр. Тавр. держ. агротехнолог. ун-ту. – Мелітополь, 2013. – Т. 57, вип. 4. – С. 3–9.

2. Бадаєв, С. Ю. Криволінійний сегмент на основі інтегральної кривої / С. Ю. Бадаєв, Є. О. Боровік // Приклад. геометрія та інж. графіка / КНУБА. – К., 2009. – Вип. 81. – С. 213–217.

3. Байдабеков, А. К. Геометрический метод конструирования лопатки вентилятора / А. К. Байдабеков // Приклад. геометрія та інж. графіка / КНУБА. – К., 2010. – Вип. 83. – С. 93–97.

4. Ванін, В. В. Геометричне моделювання – одна з основ автоматизованого проектування об’єктів і процесів машинобудування / В. В. Ванін, Г. А. Вірченко // Приклад. геометрія та інж. графіка : пр. Тавр. держ. агротехнолог. ун-ту. – Мелітополь, 2009. – Т. 43, вип. 4 – С. 3–10.

5. Гавриленко, Є. А. Визначення границь діапазонів положення дотичних до обводу з монотонною зміною кривини / Є. А. Гавриленко // Приклад. геометрія та інж. графіка : пр. Тавр. держ. агротехнолог. ун-ту. – Мелітополь, 2005. – Т. 29, вип. 4. – С. 54–58.

6. Діданов, С. В. Форми перехідних кривих залізничного шляху / С. В. Діданов // Приклад. геометрія, дизайн та об’єкти інтелект. власності : матеріали II-ї міжнар. наук.-практ. конф. студентів, аспірантів та молодих вчен. – К. : ДІЯ, 2013. – Вип. 2. − С. 55–59.

7. Довгалюк, В. Б. Геометричний аналіз структури струмин, що настилаються на поверхні різної кривини / В. Б. Довгалюк, В. О. Мілейковський // Приклад. геометрія та інж. графіка / КНУБА. – К., 2012. – Вип. 89. – С. 156–165.

8. Курган, М. Б. Перебудова кривих для впровадження швидкісного руху пасажирських поїздів / М. Б. Курган, М. А. Гусак, Н. П. Хмелевська // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Д., 2012. – Вип. 2 (40). – С. 90–97.

9. Михайленко, В. Є. Дискретне моделювання на базі інтегральної моделі кривої / В. Є. Михайленко, В. Г. Лі // Приклад. геометрія та інж. графіка / КНУБА. – К., 1999. – Вип. 66. – С. 3–8.

10. Пустюльга, С. І. Дискретне моделювання кривих за заданими функціями зміни кривини та скруту / С. І. Пустюльга, В. Р. Самостян // Сучасні пробл. геометр. моделювання : міжвузів. зб. (за напр. «Інженерна механіка»). – Луцьк, 2008. – Вип. 22, ч. 1. – С. 286–292.

11. Спірінцев, Д. В. Геометричне моделювання профілю плоских перерізів пера лопатки компресора / Д. В. Спірінцев // Геометричне та комп’ютерне моделювання : пр. Харк. держав. унту харч. та торгівлі / ХДУХТ. – Х., 2009. – Вип. 22. – С. 156–161.

12. Устенко, С. А. Моделювання кривої із застосуванням кубічного закону розподілу її кривини / С. А. Устенко // Вісн. Херсон. нац. техн. ун-ту. – Херсон, 2008. – Вип. 2 (31). – С. 480–484.

13. Устенко, С. А. Нормалізація графіків розподілу кривини / С. А. Устенко // Приклад. геометрія та інж. графіка : пр. Тавр. держ. агротехнолог. ун-ту. – Мелітополь, 2013. – Т. 56, вип. 4 – С. 227–231.

14. Устенко, С. А. Метод побудови просторової перехідної кривої / С. А. Устенко, С. В. Діданов // Наука та прогрес трансп. Вісн. Дніпропетр. нац. ун-ту залізн. трансп. – 2013. – №. 2 (44). – С. 124–128.

15. Устенко, С. А. Геометричне моделювання кривих ліній із заданою кривиною в граничних точках / С. А. Устенко, С. В. Діданов, О. Ю. Агарков // Приклад. геометрія та інж. графіка / КНУБА. – К., 2011. – Вип. 87. – С. 404–409.

16. Фокс, А. Вычислительная геометрия. Применение в проектировании и на производстве / А. Фокс, М. Пратт. – М. : Мир, 1982. – 304 с.

17. Ebaid, M. S. Y. A unified approach for designing a radial flow gas turbine / M. S. Y. Ebaid, F. S. Bhinder, G. H. Khdairi // Transactions of the ASME. – 2003. – Vol. 125, July. – P. 598–606.

18. Farin, G. Curves and surfaces for computer-aided geometric design : a practical guide / G. Farin. – Academic Press Inc., 1997. – [4-th edition]. – 447 p.

19. Lipicnik, M. New form of road/railway transition curve / M. Lipicnik // J. of Transportation Engineering, 1998. – November / December. – P. 546–556.

20. Tari, E. A new transition curve with enhanced properties / E. Tari, O. Baykal // Canadian j. of Civil Engineering, 2005. – Vol. 32. – P. 913–923.



DOI: https://doi.org/10.15802/stp2014/23797

 

Cited-by:

1. MODELING THE TRANSITION CURVE ON A LIMITED TERAIN
V. D. Borisenko, S. A. Ustenko
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 2(68)  First page: 92  Year: 2017  
doi: 10.15802/stp2017/99942



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)