Modeling of the building local protection (shelter – in place) including sorbtion of the hazardous contaminant on indoor surfaces

Authors

  • N. N. Belyayev Dep. «Hydraulics and Water Supply», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St. 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 373 15 09, e-mail gidravlika2013@mail.ru, ORCID 0000-0002-1531-7882, Ukraine https://orcid.org/0000-0002-1531-7882
  • N. V. Rostochilo Dep. «Hydraulics and Water Supply», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St. 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 373 15 09, e-mail gidravlika2013@mail.ru, ORCID 0000-0001-9811-867X, Ukraine https://orcid.org/0000-0001-9811-867X
  • F. V. Nedopekin Dep. «Physics of Nonequilibrium Processes, Metrology and Ecology», Donetsk National University, Universitetskaya St., 24, Donetsk, Ukraine, 83000, e-mail f.nedopekin@donnu.edu.ua, ORCID 0000-0003-0717-3994, Ukraine https://orcid.org/0000-0003-0717-3994

DOI:

https://doi.org/10.15802/stp2014/27323

Keywords:

air pollution, local protection of buildings, air curtain, infiltration of hazardous substances in the rooms

Abstract

Purpose. Chemically hazardous objects, where toxic substances are used, manufactured and stored, and also main lines, on which the hazardous materials transportation is conducted, pose potential sources of atmosphere accidental pollution.Development of the CFD model for evaluating the efficiency of the building local protection from hazardous substantives ingress by using air curtain and sorption/desorption of hazardous substance on indoor surfaces. Methodology. To solve the problem of hydrodynamic interaction of the air curtain with wind flow and considering the building influence on this process the model of ideal fluid is used. In order to calculate the transfer process of the hazardous substance in the atmosphere an equation of convection-diffusion transport of impurities is applied. To calculate the process of indoors air pollution under leaking of foul air Karisson & Huber model is used. This model takes into account the sorption of the hazardous substance at various indoors surfaces. For the numerical integration of the model equations differential methods are used. Findings. In this paper we construct an efficient CFD model of evaluating the effectiveness of the buildings protection against ingress of hazardous substances through the use of an air curtain. On the basis of the built model a computational experiment to assess the effectiveness of this protection method under varying the location of the air curtain relative to the building was carried out. Originality. A new model was developed to compute the effectiveness of the air curtain supply to reduce the toxic chemical concentration inside the building. Practical value. The developed model can be used for design of the building local protection against ingress of hazardous substances.

Author Biographies

N. N. Belyayev, Dep. «Hydraulics and Water Supply», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St. 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 373 15 09, e-mail gidravlika2013@mail.ru, ORCID 0000-0002-1531-7882

Н. Н. Беляев

N. V. Rostochilo, Dep. «Hydraulics and Water Supply», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St. 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 373 15 09, e-mail gidravlika2013@mail.ru, ORCID 0000-0001-9811-867X

Н. В. Росточило

F. V. Nedopekin, Dep. «Physics of Nonequilibrium Processes, Metrology and Ecology», Donetsk National University, Universitetskaya St., 24, Donetsk, Ukraine, 83000, e-mail f.nedopekin@donnu.edu.ua, ORCID 0000-0003-0717-3994

Ф. В. Недопёкин

References

Belyayev N.N., Lisnyak V.M. Zashchita atmosfery ot zagryazneniya pri migratsii toksichnykh veshchestv [Protection of the atmosphere from contamination migration of toxic substances]. Dnipropetrovsk, OOO «In-novatsiya» Publ., 2006. 150 p.

Belyayev N.N., Gunko E.Yu. Mashykhina P.B. Matematicheskoye modelirovaniye v zadachakh ekologicheskoy bezopasnosti i monitoringa chrezvychaynykh situatsiy [Mathematical modeling in problems of en-vironmental safety and emergency monitoring]. Dnipropetrovsk, «Aktsent PP» Publ., 2013. 159 p.

Berlyand M. Ye. Prognoz i regulirovaniye zagryazneniya atmosfery [Prediction and control of air pollution]. Leningrad, Gidrometeoizdat Publ., 1985. 273 p.

Gunko Ye.Yu. Otsenka riska toksichnogo porazheniya lyudey pri avariynom vybrose khimicheski opasnogo veshchestva [Risk assessment of toxic shock to persons under the accidental release of the chemically dangerous substances]. Vіsnyk Dnіpropetrovskoho natsіonalnoho unіversitetu zalіznychnoho transportu іmenі akademіka V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2008, issue 20, pp. 87-90.

Kupayev V.I., Rasskazov S.V. Metody lokalizatsii ochaga avarii i likvidatsii yeye posledstviy na khimicheski opasnykh obyektakh zheleznodorozhnogo transporta [Methods for localization of the accident and elimination of its consequences on the chemically hazardous facilities of railway transport]. Transport: nauka, tekhnika, upravleniye – Transport: Science, Techniques, Management, 2003, no. 4, pp. 28-34.

Loytsyanskiy L.G. Mekhanika zhidkosti i gaza [Mechanics of fluid and gas]. Moscow, Nauka Publ., 1978. 735 p.

Marchuk G.I. Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy [Mathematical modeling in the environmental problem]. Moscow, Nauka Publ., 1982. 320 p.

Mashykhina P.B. Modelirovaniye rasprostraneniya primesi v atmosfere s uchetom relefa mestnosti [Simulation of the distribution impurity in the atmosphere in view of the terrain]. Vіsnyk Dnіpropetrovskoho natsіonalnoho unіversitetu zalіznychnoho transportu іmenі akademіka V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2009, issue 27, pp. 138-142.

Samarskiy A.A. Teoriya raznostnykh skhem [Theory of difference schemes]. Moscow, Nauka Publ., 1983. 616 p.

Zgurovskiy M.Z., Skopetskiy V.V., Khrushch V.K., Belyayev N.N. Chislennoye modelirovaniye rasprostraneniya zagryazneniya v okruzhayushchey srede [Numerical simulation of the spread of contamination in the environment]. Kyiv, Naukova dumka Publ., 1997. 368 p.

Belayev N.N., Khrutch V.K. An engineering approach to simulate the 3-d wind flows over buildings. Proc. of the Fourth Intern. Colloquium on Bluff Body Aerodynamics&Applications, Ruhr-Universitat. Volume of Abstracts. Bochum, 2000, pp. 471-475.

Belayev N.N., Kazakevitch M.I., Khrutch V.К. Computer simulation of the pollutant dispersion among build-ings. Proc. of the Tenth Intern. Conf. on Wind Engineering «Wind Engineering into 21st Century». Copenhagen, 1999, pp. 1217-1220.

Biliaiev M. M., Kharytonov M.M. Numerical simulation of indoor air pollution and atmosphere pollution for regions having complex topography. SPS Intern. Tech. Meeting Air Pollution Modeling and its Application XXI. Italy, 2012, pp. 87-91.

Chester C.V. Technical options for protecting civilians from toxic vapors and gases. Washington, Department of Energy ORNL/TM-0423 Publ., 1988. 50 p.

Chan W.R., Nazaroff W.W., Price P.N., Gadgil A.J. Effectiveness of Urban Shelter-in-Place. II: Residental Dis-tricts, 2008. 31 р. Available at: http://www.osti.gov/scitech/servlets/purl/928232 (Accessed 29 March 2014).

Chan R. Wanyu, Price N. Philli, Gadgil. J. Ashok. 84th American Meteorological Society Annual Meeting «Modeling shelter-in-place including sorption on indoor surfaces». Boston, vol. PNFUZ Session 6.5, 2004, pp. 9.

Protecting buildings and their occupants from airborne hazards. Washington, The Corps Publ., 2001. 25 p.

Price N. Phillip, Sohn D. Michael, Gadgil J. Ashok. Protecting buildings from a biological or chemical attack: actions to take before or during a release. Honolulu, University Press of the Pacific Publ., 2004. 52 p.

Ohba Ryohji, Kouchi Akinori, Hara Tomohiro, Yoneda Jiro, Kato Shinsuke. Validation of numerical simulation system for gas diffusion in urban area, 2009. 8 p. Available at: http://www.ciss.iis.u-tokyo.ac.jp/safety/pdflist/pdf/MHI_09_2.pdf (Accessed 29 March 2014).

Published

2014-08-25

How to Cite

Belyayev, N. N., Rostochilo, N. V., & Nedopekin, F. V. (2014). Modeling of the building local protection (shelter – in place) including sorbtion of the hazardous contaminant on indoor surfaces. Science and Transport Progress, (4(52), 23–36. https://doi.org/10.15802/stp2014/27323

Issue

Section

ECOLOGY AND INDUSTRIAL SAFETY