DEVELOPMENT OF CRITERIA OF CHARGE AND DISCHARGE EFFICIENCY OF SOLID STATE OF HEAT ACCUMULATOR

S. S. Belymenko, V. O. Ishchenko

Abstract


Purpose. Development of similarity criteria for different modes of operation of the solid-state heat accumulator working due to accumulation of heat in the volume of the heat storage material without phase transition, and the creation of systematic criteria of heat accumulator efficiency for determination the weight / size parameters and operating modes at the design stage. Methodology. To achieve the objectives of the study the theory of similarity and dimensional analysis were used as well as planning and carrying out techniques of physical experiments. Findings. Based on the theory of similarity and dimensional analysis similarity criteria operation of solid-state heat accumulators, under given basic parameters were obtained. These are performance criteria for charge, discharge and full criterion. Three theorems of similarity theory in application to the solution of engineering problems were used. The criterion of efficiency of the heat accumulator charge characterizes the effectiveness of achieving the specified value of the specific amount of heat in the material of heat accumulator under charge, under received materials, geometrical ratios, and heat flow of the heat input. The efficiency criterion characterizes the discharge efficiency of the heat accumulator, at the accepted materials; mass of heat-retainer and the total accumulated amount of heat when the value of the heat flow and the time of discharge. Full coefficient of the heat accumulator performance characterizes the efficiency of the heat accumulators for a full cycle. Originality. Accordingly to the analysis the implementation of any system of solid-state heat accumulator is possible on the basis of structural schemes of this type of device. The similarity criteria of the efficiency of the charge, the efficiency of discharge and the full criterion of solid-state heat accumulators’ efficiency based on the solid storage material without phase transition were obtained. Practical value. Criteria presented in this work are of a comparative nature. In accordance with the obtained criteria we can compare designed and existing heat accumulators that are similar to structures. Feasibility analysis indicates that the proposed assessment methodology of solid-state heat accumulators’ efficiency in different modes of operation is effective, technically feasible and allows determining the weight / size parameters and modes of operation of the solid-state heat accumulator at the design stage.


Keywords


solid-state heat accumulator; solid storage material; charge efficiency; discharge efficiency; similarity theory; dimensional analysis; similarity criterion

References


Vasilyev L.L., Boldak I.M., Domorod L.S., Shirokov Ye.I. Teplovoy akkumulyator [Heat accumulator]. A.s.1746151 SSSR, no. 4800461/06, 1992.

Bielimenko S.S. Elektroteploakumuliatsiini nahrivachi: shliakh do enerhonezalezhnosti Ukrainy [Electro-thermal and accumulative heaters is a way to nonvolatility of Ukraine]. Pratsi instytutu elektrodynamiky NAN [Proc. of The Institue of Electrodinamics of the National Academy of Sciences in Ukraine], 2006, a special issue, pp.80-83.

Bielimenko S.S. Systemy opaliuvannia teplo akumuliatsiinymy nahrivachamy [Heating systems with thermal energy storage heaters]. Ekoinform − Ecoinform, 2011, no. 6, pp.18-19.

Braun E.D., Yevdokymov Yu.A., Chichinadze A.V. Modelirovaniye treniya i iznashivaniya v mashinakh [Simulation of friction and wear in machines]. Moscow, Mashinostroyeniye Publ., 1982. 191 p.

Venikov V.A. Teoriya podobiya i modelirovaniye primenitelno k zadacham elektroenergetiki [Similarity theory and simulation as applied to problems of electricity]. Moscow, 1966. 182 p.

Habrynets V.O., Khrystian Ye.V., Tytarenko I.V. Shliakhy pidvyshchennia efektyvnosti enerhetychnykh pidrozdiliv zaliznychnoho transportu [Ways to improve the efficiency of energy units of railway transport]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2012, issue 41, pp. 187-190.

Druzhinin P.V., Korichev A.A., Kosenkov I.A. Matematycheskaya model protsessa razryadky teplovogo akkumulyatora fazovogo perekhoda [A mathematical model of the heat accumulator discharge process of phase transition]. Tekhniko-tekhnologicheskiye problemy servisa – Technical and technological problems of service, 2009, no. 4. pp. 17-22.

Druzhinin P.V., Korichev A.A., Kosenkov I.A. Matematicheskaya model protsessa khraneniya teploty v teplovom akkumulyatore [A mathematical model of the heat storage process in the heat accumulator]. Tekhniko-tekhnologicheskiye problemy servisa – Technical and technological problems of service, 2009, no. 2. pp. 63-65.

Kahramanian A.O, Onyshchenko A.V. Otsinka ekonomichnoi efektyvnosti zastosuvannia prohrivu teplovoziv vid alternatyvnykh dzherel enerhii [Assessment of the economic efficiency of locomotives warm-up from alternative energy sources]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2010, issue 32, pp. 259-263.

Levenberh V.D., Tkach M.R., Holstrem V.A. Akkumulirovaniye tepla [Heat accumulation]. Kyiv, Tekhni-ka Publ., 1991. 315 p.

Lykov A.V. Teoriya teploprovodnosty [The theory of heat conduction]. Moscow, Vysshaya Shkola Publ., 1967. 600 p.

Bulychev V.V., Yemelyanov Ye.S., Zagryazkin V.N. Teplovoy akkumulyator fazovogo perekhoda [Heat storage of phase transition]. Patent RU, no. 93036725/06, 1997.

Reznitskiy L.A. Teplovyye akkumulyatory [Heat accumulators]. Moscow, Energoatomizdat Publ., 1996. 91 p.

Filippov L.P. Teoriya termodinamicheskogo podobiya [The theory of thermodynamic similarity]. Moscow, Izdatelstvo MGU Publ., 1985. 225 p.

Chichinadze A.V. Raschet i issledovaniye vneshnego treniya pri tormozhenii [Calculation and investigation of external friction during braking]. Moscow, Nauka Publ., 1967. 331p.

Lyu Q., Chen T., Wang H., Yu T., Li Q., Tang W. Analysis on peak-load regulation ability of cogeneration unit with heat accumulator. Automation of electric Power System, June 2014, vol. 38, issue 11, 10, pp. 34-41.

Taler D. Cisec P., Tokarzik J. Water-air ceramic heat accumulator heating system for building. Runek En-ergy, 2014, vol. 107, issue 6, pp. 71-76.


GOST Style Citations


1. А. С. 1746151 СССР, МПК4 F 24 H 7/00. Тепловой аккумулятор / Л. Л. Васильев, И. М. Болдак, Л. С. Домород, Е. И. Широков (СССР). – № 04800461/06 ; заявл. 14.12.89 ; опубл. 07.07.92, Бюл. № 25. – 1 с.

2. Бєліменко, С. С. Електротеплоакумуляційні нагрівачі: шлях до енергонезалежності України / С. С. Бєліменко // Праці ін-ту електродинаміки НАН. − К., 2006. − Спец. випуск. − С. 80−83.

3. Бєліменко, С. С. Системи опалювання тепло акумуляційними нагрівачами / С. С. Бєліменко // Екоінформ. − 2011. − № 6. − С. 18–19.

4. Браун, Э. Д. Моделирование трения и изнашивания в машинах / Э. Д. Браун, Ю. А. Евдокимов, А. В. Чичинадзе.  М. : Машиностроение, 1982.  191 с.

5. Веников, В. А. Теория подобия и моделирование применительно к задачам электроэнергетики / В. А. Веников.  М., 1966.  182 с.

6. Габринець, В. О. Шляхи підвищення ефективності енергетичних підрозділів залізничного транспорту / В. О. Габринець, Є. В. Христян, І. В. Титаренко // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Д., 2012. – Вип. 41.  С. 187–190.

7. Дружинин, П. В. Математическая модель процесса разрядки теплового аккумулятора фазового перехода / П. В. Дружинин, А. А. Коричев, И. А. Косенков // Техн.-технол. пробл. сервиса.  2009.  № 4. – С 1722.

8. Дружинин, П. В. Математическая модель процесса хранения теплоты в тепловом аккумуляторе / П. В. Дружинин, А. А. Коричев, И. А. Косенков // Техн.-технол. пробл. сервиса.  2009.  № 2. – С. 6365.

9. Каграманян, А. О. Оцінка економічної ефективності застосування прогріву тепловозів від альтернативних джерел енергії / А. О. Каграманян, А. В. Онищенко // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Д., 2010. – Вип. 32.  С. 259–263.

10. Левенберг, В. Д. Аккумулирование тепла / В. Д. Левенберг, М. Р. Ткач, В. А. Гольстрем. – К. : Техника, 1991. – 315 с.

11. Лыков, А. В. Теория теплопроводности / А. В. Лыков. – М. : Высш. шк., 1967. – 600 с.

12. Пат. 2088857 Российская Федерация, МПК4 F 24 H 7/00. Тепловой аккумулятор фазового перехода / Булычев В. В., Емельянов Е. С., Загрязкин В. Н. и др. ; заявитель и патентообладатель Булычев В. В, Емельянов Е. С., Загрязкин В. Н. и др. – № 93036725/06 ; заявл. 16.07.93 ; опубл. 27.08.1997. – 1 с.

13. Резницкий, Л. А. Тепловые аккумуляторы / Л. А. Резницкий. – М. : Энергоатомиздат, 1996. – 91 с.

14. Филиппов, Л. П. Теория термодинамического подобия / Л. П. Филиппов. – М. : Изд-во МГУ, 1985. – 225 с.

15. Чичинадзе, А. В. Расчет и исследование внешнего трения при торможении / А. В. Чичинадзе. – М. : Наука, 1967. – 331 с.

16. Analysis on peak-load regulation ability of cogeneration unit with heat accumulator / Q. Lyu, T. Chen, H. Wang et al. // Automation of electric Power System.  2014. – Vol. 38. – Iss. 11, 10. – P. 34–41.

17. Taler, D. Water-air ceramic heat accumulator heating system for building / D. Taler, P. Cisec, J. Tokarzik // Runek Energy. – 2014. – Vol. 107. – Iss. 6. – P. 71–76.



DOI: https://doi.org/10.15802/stp2014/29945

 

Cited-by:

1. MODELING OF TEMPERATURE FIELDS IN A SOLID HEAT ACCUMULLATORS
S. S. Belimenko, V. O. Ishchenko, V. O. Gabrinets
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 5(65)  First page: 114  Year: 2016  
doi: 10.15802/stp2016/83406



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)