ANALYSIS AND APPLICATION PROSPECTS OF EFFECTIVE RESOURCES-SAVING TECHNOLOGIES IN CONCRETE MANUFACTURE

H. P. Ivanova, O. I. Trufanova

Abstract


Purpose. Prospectivity assessments of the nanomaterials usage in construction technologies at the same time meeting the requirements of environmental safety and rational use of the natural resources. Methodology. During the study the building composites, in particular concretes, which are obtained on the base of the raw materials, which are introduced in the array of micro- and nanolevels were researched and analyzed. The deformation and deterioration processes of nanostructured concrete depending on their composition and manufacture parameters were simulated. Findings. Concrete manufacture is in the direct dependence on its components. Due to the extraction and processing of these components land degradation occurs because of soil destruction with oversize pits, which threatens the ecology of the environment. In this connection there is a need for another concept of building materials receiving for concrete manufacture. The new branch of science based on nanotechnologies, nanomaterials and nanostructuring is a key to its foundation. The special features of nanostructured concretes are the nanoagents in their composition (carbon nano-tubes, mechanoactivated slags of blast furnace production). The study of deformation patterns and concrete deterioration based on the mechanoactivated material will purposefully affect the structure, physical and chemical properties, as well as the mechanical and deformational ones. Originality. The researches have shown that nanostructured concrete had high fluidity. The strength of such compositions is enhanced up to 13 % without reduction of concrete consumption and up to 8.8% at 10% reduced concrete consumption. Practical value. The application of the structured concretes based on the mechanoactivated material will increase the efficiency of the industrial wastes recycling and improve the physical, mechanical and technological properties of the produced composites. From the standpoint of the economic benefits, the application of the nano-structured concrete is profitable, as it develops high strength along with the decrease in the weight and volume of the constructions. The use of new technologies will improve the environmental performance of building materials and reduce the harmful effects on the environment during their production.


Keywords


concrete; mechanical activation; strength; nano-materials; nano-structuring; astralenes

References


Alferov Zh.I. O sostoyanii i perspektivakh razvitiya poluprovodnikovoy elektroniki v Rossii [About the state and prospects of semiconductor electronics development in Russian]. Nano- i mikrosistemnaya tekhnika – Nano and Microsystem Technology, 2005, no. 8, pp. 2-19.

Ivanova A.P. Issledovaniye dolgovechnosti tsentralno szhatykh sterzhney s izmenyayushchimisya geometricheskimi kharakteristikami [Investigation of centrally compressed bars life with varying geometric characteristics]. Nauchnyy vestnik NGU – Scientific Bulletin of NSU, 2013, no. 3, pp.87-92.

Kovalenko V.V. Issledovaniye vliyaniya razmera zapolnitelya na prochnost fibrobetona na izgib [Effect investigation of the filler size on strength of fiber-reinforced concrete on flexural]. Nauchnyy vestnik NGU – Scientific Bulletin of NSU, 2011, no. 6, pp. 40-42.

Korolev Ye.V., Bazhenov Yu.M., Beregovoy V.D. Modifitsirovaniye stroitelnykh materialov nanouglerodnymi trubkami i fullerenami [Modification of building materials with carbon nano tubes and fullerenes]. Stroitelnyye Materialy–Nauka – Building Materials–Science, 2006, no. 8, pp. 2-4.

Ponomarev A.N. Perspektivnyye konstruktsionnyye materialy i tekhnologii, sozdavayemyye s primeneniyem nanodispersnykh fulleroidnykh system [Promising construction materials and technologies that are created with the use of nano-disperse fulleroid systems]. Voprosy materialovedeniya – Problems of Materials Science, 2001, vol. 26, no. 2, p. 65.

Rakov Ye.G. Nanotrubki i fullereny [The nanotubes and fullerenes]. Moscow, Logos Publ., 2006. 371 p.

Rudakov V.N., Molodchenko G.A., Abrakitov D.V. Nanotekhnologicheskiye aspekty otsenki normativnykh fiziko-mekhanicheskikh kharakteristik konstruktsionnogo betona v ramkakh teorii skolzheniya mikropolyarizovannoy sredy (mps) pri doveritelnoy veroyatnosti vbkni = (1-1,64×0,135×0,01bi) [Standart physical and mechanical carachteristics of consructial concrete and their nanotechnological valuation aspects in frame of the theory sliding into a micropolarized sphere (mps) with an acceptable probability vbkni = (1-1,64 × 0,135 × 0,01bi]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2011, issue 36, pp. 173-179.

Trufanova O.I. Analiz perspektiv razvitiya betonnogo proizvodstva v Ukraine s uchetom strukturirovaniya samogo betona na nanourovne [Analysis of prospects for the development of concrete manufacture in Ukraine, including the structuring of the concrete at the nanoscale]. Stroitelstvo, materialovedeniye, mashinostroyeniye [Construction, materials science, engineering], 2014, no. 75, pp. 247-250.

Shatenko A.N., Shtelmakh A.S. Modelirovaniye protsessov nakopleniya geometricheskikh povrezhdeniy vsledstviye korrozii v sterzhnyakh pri osevom rastyazhenii [Modeling the processes of accumulation of geometric damage due to corrosion in the bars under axial tension]. Metallurgicheskaya i gornorudnaya promyshlennost – Metallurgical and Mining Industry, 2012, no. 5, pp. 75-78.

Yudovich M.Ye., Ponomarev A.N., Gareyev S.I. Poverkhnostno-aktivnyye svoystva nanomodifitsirovannykh plastifikatorov [Surface-active properties of nanomodified plasticizers]. Stroitelnyye materialy – Building materials, 2008, no. 3, pp. 2-3.

Panek J. The implementation of nanotechnology in concrete. Twelfth Annual Conference. Pittsburgh, March 2012, pp.1-5.

Solomon G. Improved technique of dispersing carbon nano-tubes may help to revolutionize concrete. Journal of Eden Energy, December 2011, level 40, pp.1-3.

Will K., Loh J. Nanoengineering ultra-high-performance concrete with multiwalled carbon nanotubes. Journal of the Transportation Research Board, December 2010, no. 2142, pp. 1-8.


GOST Style Citations


1. Алферов, Ж. И. О состоянии и перспективах развития полупроводниковой электроники в России / Ж. И. Алферов // Нано- и микросистемная техника. – 2005. – № 8. – С. 2–19.

2. Иванова, А. П. Исследование долговечности центрально сжатых стержней с изменяющимися геометрическими характеристиками / А. П. Иванова // Науч. вестн. НГУ. – 2013. – № 3. – С. 87–92.

3. Коваленко, В. В. Исследование влияния размера заполнителя на прочность фибробетона на изгиб / В. В. Коваленко // Науч. вестн. НГУ. – 2011. – № 6. – С. 40–42.

4. Королев, Е. В. Модифицирование строительных материалов наноуглеродными трубками и фуллеренами / Е. В. Королев, Ю. М. Баженов, В. Д. Береговой // Строит. Материалы–Наука. – 2006. – № 8. – С. 2–4.

5. Пономарев, А. Н. Перспективные конструкционные материалы и технологии, создаваемые с применением нанодисперсных фуллероидных систем / А. Н. Пономарев // Вопр. материаловедения. – 2001. – Т. 26, № 2. – С. 65.

6. Раков, Э. Г. Нанотрубки и фуллерены : учеб. пособие / Э. Г. Раков. – М. : Логос, 2006. – 371 с.

7. Рудак, В. Н. Нанотехнологические аспекты оценки нормативных физико-механических характеристик конструкционного бетона в рамках теории скольжения микрополяризованной среды (мпс) при доверительной вероятности vbkni = (1-1,64×0,135×0,01bi) / В. Н. Рудак, Г. А. Молодченко, Д. В. Абракитов // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Д., 2011. – Вип. 39. – С. 173–179.

8. Труфанова, О. И. Анализ перспектив развития бетонного производства в Украине с учетом структурирования самого бетона на нано-уровне / Стр-во, материаловедение, машино-строение : сб. науч. тр. – Д., 2014. – Вып. 75. – С. 247–250.

9. Шашенко, А. Н. Моделирование процессов накопления геометрических повреждений вследствие коррозии в стержнях при осевом растяжении / А. Н. Шатенко, А. С. Штельмах // Металлург. и горноруд. пром-сть. – 2012. – № 5. – С. 75–78.

10. Юдович, М. Е. Поверхностноактивные свойства наномодифицированных пластификаторов / М. Е. Юдович, А. Н. Пономарев, С. И. Гареев // Строит. материалы. – 2008. – № 3. – С. 2–3.

11. Panek, J. The implementation of nanotechnology in concrete / J. Panek, S. Maguire // Engineering Freshman Engineering Conference (14.04.2012) : 12 Annual Conference / Pittsburgh : University of Pittsburgh Swanson School, 2012. – Р. 1–5.

12. Solomon, G. Improved technique of dispersing carbon nanotubes may help to revolutionize concrete / G. Solomon // J. of the Eden Energy. – December 2011. – Level 40. – Р. 1–3.

13. Will, K. Nanoengineering ultra-high-performance concrete with multiwalled carbon nanotubes / K. Will, J. Loh // J. of the Transportation Research Board. – 2010. – № 2142. – Р. 1–8.



DOI: https://doi.org/10.15802/stp2014/30453

 

Cited-by:

1. CONCRETE BASED ON MODIFIED DISPERSE CEMENT SYSTEM
D. V. Rudenko
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 4(64)  First page: 169  Year: 2016  
doi: 10.15802/stp2016/78008

2. PHYSICO-CHEMICAL MODIFICATION OF MONOLITHIC CONCRETE CEMENT SYSTEM
D. V. Rudenko
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 6(60)  First page: 174  Year: 2015  
doi: 10.15802/stp2015/57103

3. USING THE GEOMETRIC SIMULATION AT PLANNING OF MIXERS OF TELESCOPIC CONSTRUCTION
K. K. Miroshnychenko
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 4(58)  First page: 190  Year: 2015  
doi: 10.15802/stp2015/49283

4. THE STUDY OF DEFORMATION CHARACTERISTICS OF SOIL MATERIALS WITH THE USAGE OF WASTES
L. V. Trykoz, V. U. Savchuk
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 2(68)  First page: 166  Year: 2017  
doi: 10.15802/stp2017/100249



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)